用于水文监测系统的非接触式压电-电磁混合发电机

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Longhai Li, Yuhang Han, Xiaona Sun, Lei Sun and Lipeng He
{"title":"用于水文监测系统的非接触式压电-电磁混合发电机","authors":"Longhai Li, Yuhang Han, Xiaona Sun, Lei Sun and Lipeng He","doi":"10.1039/D4SE01494D","DOIUrl":null,"url":null,"abstract":"<p >Water resources are some of the most abundant natural resources in the world, and their rational development, utilization and monitoring are becoming increasingly important. This paper presents a non-contact piezoelectric–electromagnetic generator (P-EHG) for hydrological monitoring. The device was divided into a piezoelectric self-powering module and electromagnetic sensing module. Adopt space gear set system in the structure to realize multi-frequency bidirectional excitation of the piezoelectric element and electromagnetic component. Experimental system configuration was utilized to investigate the impact of the height of the magnet, the force-bearing position in the PEG, and the polarity of the excitation rod magnet on the output performance of the P-EHG. The highest voltages that could be produced by a single PEG and EMG when the P-EHG was built with the ideal structural characteristics were 59.88 V and 831 mV, respectively. The maximum output power of the single PEG and EMG was 10.121 mW and 0.01036 mW, respectively, and the maximum output power of the hybrid was 12.288 mW. Thus, the power output of the hybrid was 21.4% higher than that of the PEG and 118 510% higher than that of the EMG. Subsequently, the application of the P-EHG was demonstrated and verified in an actual water environment to prove its self-powering and self-sensing capabilities as a hydrological monitoring system. This provides a basis for resource monitoring in deep seas, oceans, and rivers.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 7","pages":" 1839-1847"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-contact piezoelectric–electromagnetic hybrid generator for hydrological monitoring systems†\",\"authors\":\"Longhai Li, Yuhang Han, Xiaona Sun, Lei Sun and Lipeng He\",\"doi\":\"10.1039/D4SE01494D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Water resources are some of the most abundant natural resources in the world, and their rational development, utilization and monitoring are becoming increasingly important. This paper presents a non-contact piezoelectric–electromagnetic generator (P-EHG) for hydrological monitoring. The device was divided into a piezoelectric self-powering module and electromagnetic sensing module. Adopt space gear set system in the structure to realize multi-frequency bidirectional excitation of the piezoelectric element and electromagnetic component. Experimental system configuration was utilized to investigate the impact of the height of the magnet, the force-bearing position in the PEG, and the polarity of the excitation rod magnet on the output performance of the P-EHG. The highest voltages that could be produced by a single PEG and EMG when the P-EHG was built with the ideal structural characteristics were 59.88 V and 831 mV, respectively. The maximum output power of the single PEG and EMG was 10.121 mW and 0.01036 mW, respectively, and the maximum output power of the hybrid was 12.288 mW. Thus, the power output of the hybrid was 21.4% higher than that of the PEG and 118 510% higher than that of the EMG. Subsequently, the application of the P-EHG was demonstrated and verified in an actual water environment to prove its self-powering and self-sensing capabilities as a hydrological monitoring system. This provides a basis for resource monitoring in deep seas, oceans, and rivers.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 7\",\"pages\":\" 1839-1847\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01494d\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01494d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水资源是世界上最丰富的自然资源之一,合理开发、利用和监测水资源的重要性日益凸显。介绍了一种用于水文监测的非接触式压电电磁发生器(P-EHG)。该装置分为压电自供电模块和电磁传感模块。结构上采用空间齿轮组系统,实现压电元件和电磁元件的多频双向激励。利用实验系统配置,研究了磁体高度、在聚乙二醇中受力位置以及励磁棒磁体极性对P-EHG输出性能的影响。在构建具有理想结构特性的P-EHG时,单个PEG和EMG能产生的最高电压分别为59.88 V和831 mV。单个PEG和EMG的最大输出功率分别为10.121 mW和0.01036 mW,混合动力的最大输出功率为12.288 mW。因此,混合动力的输出功率比PEG高21.4%,比EMG高118510%。随后,在实际水环境中对P-EHG的应用进行了演示和验证,以证明其作为水文监测系统的自供电和自感知能力。这为深海、海洋和河流的资源监测提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-contact piezoelectric–electromagnetic hybrid generator for hydrological monitoring systems†

Non-contact piezoelectric–electromagnetic hybrid generator for hydrological monitoring systems†

Water resources are some of the most abundant natural resources in the world, and their rational development, utilization and monitoring are becoming increasingly important. This paper presents a non-contact piezoelectric–electromagnetic generator (P-EHG) for hydrological monitoring. The device was divided into a piezoelectric self-powering module and electromagnetic sensing module. Adopt space gear set system in the structure to realize multi-frequency bidirectional excitation of the piezoelectric element and electromagnetic component. Experimental system configuration was utilized to investigate the impact of the height of the magnet, the force-bearing position in the PEG, and the polarity of the excitation rod magnet on the output performance of the P-EHG. The highest voltages that could be produced by a single PEG and EMG when the P-EHG was built with the ideal structural characteristics were 59.88 V and 831 mV, respectively. The maximum output power of the single PEG and EMG was 10.121 mW and 0.01036 mW, respectively, and the maximum output power of the hybrid was 12.288 mW. Thus, the power output of the hybrid was 21.4% higher than that of the PEG and 118 510% higher than that of the EMG. Subsequently, the application of the P-EHG was demonstrated and verified in an actual water environment to prove its self-powering and self-sensing capabilities as a hydrological monitoring system. This provides a basis for resource monitoring in deep seas, oceans, and rivers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信