生物组织无线电力传输的最佳频率

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Nam Ha-Van;Sergei A. Tretyakov;Constantin R. Simovski
{"title":"生物组织无线电力传输的最佳频率","authors":"Nam Ha-Van;Sergei A. Tretyakov;Constantin R. Simovski","doi":"10.1109/OJAP.2025.3526414","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) encounters challenges when the receiver is located in biological tissues, which are lossy and dispersive. Recent studies have paid significant attention to the mechanism of WPT in unbounded lossy media and between multiple media, such as at air-biological tissue interfaces. We present a comparative theoretical study of a basic WPT system for two cases: when both transmitting and receiving loops are inside a biological tissue (human body) and when the transmitting loop is outside while the received loop is inside. The study aims to find and compare optimal frequency ranges of WPT, distinguishing the regimes of maximal efficiency and maximal transferred power for both of these cases. We have found that the impact of the interface results in a significant increase in the frequencies that are optimal for the maximum power transfer efficiency: from dozens of MHz for a WPT system entirely located in the medium to the GHz range for a WPT system with the transmitting antenna in free space. Though the bands of the maximal efficiency and maximal power transfer never coincide, they overlap if the transmitting loop is in the air.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 2","pages":"433-444"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829641","citationCount":"0","resultStr":"{\"title\":\"Optimal Frequencies for Wireless Power Transfer Through Biological Tissues\",\"authors\":\"Nam Ha-Van;Sergei A. Tretyakov;Constantin R. Simovski\",\"doi\":\"10.1109/OJAP.2025.3526414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless power transfer (WPT) encounters challenges when the receiver is located in biological tissues, which are lossy and dispersive. Recent studies have paid significant attention to the mechanism of WPT in unbounded lossy media and between multiple media, such as at air-biological tissue interfaces. We present a comparative theoretical study of a basic WPT system for two cases: when both transmitting and receiving loops are inside a biological tissue (human body) and when the transmitting loop is outside while the received loop is inside. The study aims to find and compare optimal frequency ranges of WPT, distinguishing the regimes of maximal efficiency and maximal transferred power for both of these cases. We have found that the impact of the interface results in a significant increase in the frequencies that are optimal for the maximum power transfer efficiency: from dozens of MHz for a WPT system entirely located in the medium to the GHz range for a WPT system with the transmitting antenna in free space. Though the bands of the maximal efficiency and maximal power transfer never coincide, they overlap if the transmitting loop is in the air.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":\"6 2\",\"pages\":\"433-444\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829641\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10829641/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10829641/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无线电力传输(WPT)面临的挑战是,当接收器位于生物组织中,这是损耗和色散。近年来的研究重点是无界损耗介质中WPT的发生机制以及多介质间WPT的发生机制,如空气-生物组织界面。我们对一个基本的WPT系统进行了两种情况的比较理论研究:当发射回路和接收回路都在生物组织(人体)内部时,以及当发射回路在外部而接收回路在内部时。本研究旨在找出并比较WPT的最佳频率范围,区分这两种情况下的最大效率和最大传输功率制度。我们发现,接口的影响导致最大功率传输效率最佳的频率显著增加:从完全位于介质中的WPT系统的数十MHz到具有自由空间发射天线的WPT系统的GHz范围。虽然最大效率和最大功率传输的频带不会重合,但如果发射环在空中,它们会重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Frequencies for Wireless Power Transfer Through Biological Tissues
Wireless power transfer (WPT) encounters challenges when the receiver is located in biological tissues, which are lossy and dispersive. Recent studies have paid significant attention to the mechanism of WPT in unbounded lossy media and between multiple media, such as at air-biological tissue interfaces. We present a comparative theoretical study of a basic WPT system for two cases: when both transmitting and receiving loops are inside a biological tissue (human body) and when the transmitting loop is outside while the received loop is inside. The study aims to find and compare optimal frequency ranges of WPT, distinguishing the regimes of maximal efficiency and maximal transferred power for both of these cases. We have found that the impact of the interface results in a significant increase in the frequencies that are optimal for the maximum power transfer efficiency: from dozens of MHz for a WPT system entirely located in the medium to the GHz range for a WPT system with the transmitting antenna in free space. Though the bands of the maximal efficiency and maximal power transfer never coincide, they overlap if the transmitting loop is in the air.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信