煤系沥青质中CO2/ n2强化煤层气开采的理论研究

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-03-26 DOI:10.1016/j.fuel.2025.134693
Abdolhalim Torrik , Mozafar Rezaee , Farshad Mirzaee Valadi
{"title":"煤系沥青质中CO2/ n2强化煤层气开采的理论研究","authors":"Abdolhalim Torrik ,&nbsp;Mozafar Rezaee ,&nbsp;Farshad Mirzaee Valadi","doi":"10.1016/j.fuel.2025.134693","DOIUrl":null,"url":null,"abstract":"<div><div>The global energy supply relies heavily on fossil fuels, contributing significantly to greenhouse gas emissions and climate change. Despite efforts to reduce CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions through renewable energy, substantial amounts continue to be released. Coal bed methane recovery (CBM) presents opportunities in this regard, necessitating a thorough understanding to minimize associated risks. To gain better insight into N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-ECBM and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-ECBM processes, an asphaltene model was selected, heteroatoms (CH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, NH, CO, S) were incorporated into it, and the adsorption of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, and N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> was investigated. We utilized grand canonical Monte Carlo (GCMC), molecular dynamics (MD), and density functional theory (DFT) for this purpose. The results show that CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> has the highest adsorption energy, with values of up to −12 kJ/mol on asphaltene models, compared to −8 kJ/mol for CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> and −7 kJ/mol for N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Temperature was found to reduce adsorption capacity, while increased pressure positively affected gas uptake, agreeing with experiments. The isosteric heats of adsorption for all gases were below 10 kJ/mol, indicating a physisorption process. Additionally, the self-diffusion coefficient increases with temperature in accordance with experiments, with CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> displaying the lowest value among the studied gases, suggesting a stronger affinity to the asphaltene surface. DFT analysis showed that the adsorption of gases on asphaltene molecules was a physical process (van der Waals interaction). These findings highlight the suitability of asphaltene structures for CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-ECBM, where CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> can be used to displace methane in coal seams, aiding both methane recovery and greenhouse gas mitigation. The strong interaction between CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and asphaltene suggests that asphaltene-based adsorbents could be developed for more efficient carbon capture and storage technologies.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"395 ","pages":"Article 134693"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical investigation of CO2/N2-enhanced coalbed methane recovery in coal-derived asphaltenes\",\"authors\":\"Abdolhalim Torrik ,&nbsp;Mozafar Rezaee ,&nbsp;Farshad Mirzaee Valadi\",\"doi\":\"10.1016/j.fuel.2025.134693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The global energy supply relies heavily on fossil fuels, contributing significantly to greenhouse gas emissions and climate change. Despite efforts to reduce CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions through renewable energy, substantial amounts continue to be released. Coal bed methane recovery (CBM) presents opportunities in this regard, necessitating a thorough understanding to minimize associated risks. To gain better insight into N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-ECBM and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-ECBM processes, an asphaltene model was selected, heteroatoms (CH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, NH, CO, S) were incorporated into it, and the adsorption of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, and N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> was investigated. We utilized grand canonical Monte Carlo (GCMC), molecular dynamics (MD), and density functional theory (DFT) for this purpose. The results show that CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> has the highest adsorption energy, with values of up to −12 kJ/mol on asphaltene models, compared to −8 kJ/mol for CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> and −7 kJ/mol for N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Temperature was found to reduce adsorption capacity, while increased pressure positively affected gas uptake, agreeing with experiments. The isosteric heats of adsorption for all gases were below 10 kJ/mol, indicating a physisorption process. Additionally, the self-diffusion coefficient increases with temperature in accordance with experiments, with CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> displaying the lowest value among the studied gases, suggesting a stronger affinity to the asphaltene surface. DFT analysis showed that the adsorption of gases on asphaltene molecules was a physical process (van der Waals interaction). These findings highlight the suitability of asphaltene structures for CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-ECBM, where CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> can be used to displace methane in coal seams, aiding both methane recovery and greenhouse gas mitigation. The strong interaction between CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and asphaltene suggests that asphaltene-based adsorbents could be developed for more efficient carbon capture and storage technologies.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"395 \",\"pages\":\"Article 134693\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001623612500417X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001623612500417X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

全球能源供应严重依赖化石燃料,这对温室气体排放和气候变化造成了重大影响。尽管人们努力通过可再生能源来减少二氧化碳的排放,但大量的二氧化碳仍在继续释放。煤层气开采(CBM)在这方面提供了机会,需要全面了解以最大限度地降低相关风险。为了更好地了解N2- ecbm和CO2- ecbm过程,选择了沥青质模型,将杂原子(CH2, nh3, CO, S)加入其中,并研究了其对CO2, CH4和N2的吸附。为此,我们使用了大正则蒙特卡罗(GCMC)、分子动力学(MD)和密度泛函理论(DFT)。结果表明,CO2的吸附能最高,沥青质的吸附能可达- 12 kJ/mol,而CH4的吸附能为- 8 kJ/mol, N2的吸附能为- 7 kJ/mol。温度降低了吸附能力,而压力增加对气体吸收率有积极影响,这与实验结果一致。所有气体的等等吸附热均小于10 kJ/mol,表明存在物理吸附过程。自扩散系数随温度的升高而增大,其中CO2的自扩散系数最小,说明CO2对沥青质表面具有较强的亲和性。DFT分析表明,气体在沥青质分子上的吸附是一个物理过程(范德华相互作用)。这些发现强调了沥青质结构对CO2- ecbm的适用性,其中CO2可以用来取代煤层中的甲烷,有助于甲烷的回收和温室气体的减少。二氧化碳和沥青质之间的强相互作用表明,基于沥青质的吸附剂可以开发出更有效的碳捕获和储存技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical investigation of CO2/N2-enhanced coalbed methane recovery in coal-derived asphaltenes

Theoretical investigation of CO2/N2-enhanced coalbed methane recovery in coal-derived asphaltenes
The global energy supply relies heavily on fossil fuels, contributing significantly to greenhouse gas emissions and climate change. Despite efforts to reduce CO2 emissions through renewable energy, substantial amounts continue to be released. Coal bed methane recovery (CBM) presents opportunities in this regard, necessitating a thorough understanding to minimize associated risks. To gain better insight into N2-ECBM and CO2-ECBM processes, an asphaltene model was selected, heteroatoms (CH2, NH, CO, S) were incorporated into it, and the adsorption of CO2, CH4, and N2 was investigated. We utilized grand canonical Monte Carlo (GCMC), molecular dynamics (MD), and density functional theory (DFT) for this purpose. The results show that CO2 has the highest adsorption energy, with values of up to −12 kJ/mol on asphaltene models, compared to −8 kJ/mol for CH4 and −7 kJ/mol for N2. Temperature was found to reduce adsorption capacity, while increased pressure positively affected gas uptake, agreeing with experiments. The isosteric heats of adsorption for all gases were below 10 kJ/mol, indicating a physisorption process. Additionally, the self-diffusion coefficient increases with temperature in accordance with experiments, with CO2 displaying the lowest value among the studied gases, suggesting a stronger affinity to the asphaltene surface. DFT analysis showed that the adsorption of gases on asphaltene molecules was a physical process (van der Waals interaction). These findings highlight the suitability of asphaltene structures for CO2-ECBM, where CO2 can be used to displace methane in coal seams, aiding both methane recovery and greenhouse gas mitigation. The strong interaction between CO2 and asphaltene suggests that asphaltene-based adsorbents could be developed for more efficient carbon capture and storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信