加权Lebesgue空间上bi-Schrödinger算子的Riesz变换

IF 1.2 3区 数学 Q1 MATHEMATICS
Nguyen Ngoc Trong , Le Xuan Truong , Tan Duc Do
{"title":"加权Lebesgue空间上bi-Schrödinger算子的Riesz变换","authors":"Nguyen Ngoc Trong ,&nbsp;Le Xuan Truong ,&nbsp;Tan Duc Do","doi":"10.1016/j.jmaa.2025.129516","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>d</mi><mo>∈</mo><mo>{</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mo>…</mo><mo>}</mo></math></span> and a weight <span><math><mi>w</mi><mo>∈</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mi>ρ</mi></mrow></msubsup></math></span>. We consider the fourth-order Riesz transform <span><math><mi>T</mi><mo>=</mo><msup><mrow><mi>∇</mi></mrow><mrow><mn>4</mn></mrow></msup><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> associated with the bi-Schrödinger operator <span><math><mi>L</mi><mo>=</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <span><math><mi>V</mi><mo>∈</mo><mi>R</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><mi>σ</mi><mo>&gt;</mo><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> stands for a Gaussian class of potentials. We show that <em>T</em> is bounded on <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> for all <em>p</em> in a suitable range depending on <em>σ</em>. If more conditions are imposed on either <em>σ</em> or <em>V</em>, the range for <em>p</em> can be extended to <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129516"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riesz transforms for bi-Schrödinger operators on weighted Lebesgue spaces\",\"authors\":\"Nguyen Ngoc Trong ,&nbsp;Le Xuan Truong ,&nbsp;Tan Duc Do\",\"doi\":\"10.1016/j.jmaa.2025.129516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>d</mi><mo>∈</mo><mo>{</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mo>…</mo><mo>}</mo></math></span> and a weight <span><math><mi>w</mi><mo>∈</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mi>ρ</mi></mrow></msubsup></math></span>. We consider the fourth-order Riesz transform <span><math><mi>T</mi><mo>=</mo><msup><mrow><mi>∇</mi></mrow><mrow><mn>4</mn></mrow></msup><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> associated with the bi-Schrödinger operator <span><math><mi>L</mi><mo>=</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <span><math><mi>V</mi><mo>∈</mo><mi>R</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><mi>σ</mi><mo>&gt;</mo><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> stands for a Gaussian class of potentials. We show that <em>T</em> is bounded on <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> for all <em>p</em> in a suitable range depending on <em>σ</em>. If more conditions are imposed on either <em>σ</em> or <em>V</em>, the range for <em>p</em> can be extended to <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"548 2\",\"pages\":\"Article 129516\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002975\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002975","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设d∈{5,6,7,…},权值w∈a∞ρ。我们考虑与bi-Schrödinger算子L=Δ2+V2关联的四阶Riesz变换T=∇4L−1,其中V∈RHσ∩G2, σ>;2d3和G2表示高斯势类。我们证明了T在Lwp(Rd)上是有界的,所有p都在一个合适的范围内,这取决于σ。如果对σ或V施加更多的条件,则p的范围可以扩展到(1,∞)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riesz transforms for bi-Schrödinger operators on weighted Lebesgue spaces
Let d{5,6,7,} and a weight wAρ. We consider the fourth-order Riesz transform T=4L1 associated with the bi-Schrödinger operator L=Δ2+V2, where VRHσG2 with σ>2d3 and G2 stands for a Gaussian class of potentials. We show that T is bounded on Lwp(Rd) for all p in a suitable range depending on σ. If more conditions are imposed on either σ or V, the range for p can be extended to (1,).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信