{"title":"极性Willis换能器反设计的压电表变换","authors":"Li Huang , Rui Zhu , Gengkai Hu , Yangyang Chen","doi":"10.1016/j.eml.2025.102315","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric lattices with delicately designed microscopic geometry are powerful building blocks to construct integrated sensors and actuators with versatile, yet unconventional, responses absent from bulk materials. However, the inverse design of the microscopic geometry to achieve a sought-after electromechanical response remains elusive. Here, we suggest an analytical approach, called <em>piezoelectric gauge transformation</em>, to design piezoelectric lattice transducers that can deform to an arbitrary desired displacement field when a voltage is applied. We first develop continuum piezoelectric gauge transformation and find that the transformed piezoelectric material displays piezoelectric polarity and Willis coupling in the sense that the applied electric field generates asymmetric stress and body force, and both rigid body rotation and translation induce electric charges. To design this polar and Willis-type piezoelectric material, we develop discrete piezoelectric gauge transformation and propose feasible lattice design guidelines. Numerical simulations are performed to validate the piezoelectric gauge transformation and demonstrate a range of appealing displacement control functions. The study presents a complete theoretical framework for the inverse design of lattice transducers to achieve arbitrary desired actuated displacement fields, beneficial to the development of soft actuators, robotics, and other piezoelectric devices.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"77 ","pages":"Article 102315"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezoelectric gauge transformation for inverse design of polar Willis transducers\",\"authors\":\"Li Huang , Rui Zhu , Gengkai Hu , Yangyang Chen\",\"doi\":\"10.1016/j.eml.2025.102315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Piezoelectric lattices with delicately designed microscopic geometry are powerful building blocks to construct integrated sensors and actuators with versatile, yet unconventional, responses absent from bulk materials. However, the inverse design of the microscopic geometry to achieve a sought-after electromechanical response remains elusive. Here, we suggest an analytical approach, called <em>piezoelectric gauge transformation</em>, to design piezoelectric lattice transducers that can deform to an arbitrary desired displacement field when a voltage is applied. We first develop continuum piezoelectric gauge transformation and find that the transformed piezoelectric material displays piezoelectric polarity and Willis coupling in the sense that the applied electric field generates asymmetric stress and body force, and both rigid body rotation and translation induce electric charges. To design this polar and Willis-type piezoelectric material, we develop discrete piezoelectric gauge transformation and propose feasible lattice design guidelines. Numerical simulations are performed to validate the piezoelectric gauge transformation and demonstrate a range of appealing displacement control functions. The study presents a complete theoretical framework for the inverse design of lattice transducers to achieve arbitrary desired actuated displacement fields, beneficial to the development of soft actuators, robotics, and other piezoelectric devices.</div></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"77 \",\"pages\":\"Article 102315\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431625000276\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000276","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Piezoelectric gauge transformation for inverse design of polar Willis transducers
Piezoelectric lattices with delicately designed microscopic geometry are powerful building blocks to construct integrated sensors and actuators with versatile, yet unconventional, responses absent from bulk materials. However, the inverse design of the microscopic geometry to achieve a sought-after electromechanical response remains elusive. Here, we suggest an analytical approach, called piezoelectric gauge transformation, to design piezoelectric lattice transducers that can deform to an arbitrary desired displacement field when a voltage is applied. We first develop continuum piezoelectric gauge transformation and find that the transformed piezoelectric material displays piezoelectric polarity and Willis coupling in the sense that the applied electric field generates asymmetric stress and body force, and both rigid body rotation and translation induce electric charges. To design this polar and Willis-type piezoelectric material, we develop discrete piezoelectric gauge transformation and propose feasible lattice design guidelines. Numerical simulations are performed to validate the piezoelectric gauge transformation and demonstrate a range of appealing displacement control functions. The study presents a complete theoretical framework for the inverse design of lattice transducers to achieve arbitrary desired actuated displacement fields, beneficial to the development of soft actuators, robotics, and other piezoelectric devices.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.