Ahsan Riaz Khan , Amol D. Gholap , Navdeep Singh Grewal , Zhang Jun , Mohammad Khalid , Hai-Jun Zhang
{"title":"智能混合支架的进展:再生临床应用的战略途径","authors":"Ahsan Riaz Khan , Amol D. Gholap , Navdeep Singh Grewal , Zhang Jun , Mohammad Khalid , Hai-Jun Zhang","doi":"10.1016/j.engreg.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of innovative 3D-printed hybrid scaffolds is transforming the landscape of tissue engineering by effectively addressing various regenerative clinical challenges. These scaffolds, which combine the advantageous properties of metals, polymers, and ceramics, surpass the limitations associated with single-material constructs. This review provides a comprehensive analysis of the applications of hybrid scaffolds in cardiology, orthopedics, and neural tissue regeneration, highlighting their role in advancing biomimetics, accelerating wound healing, enabling targeted drug delivery, and facilitating tumor therapy. Critical factors such as biomechanical compatibility, bioactivity, degradation rates, and mechanical integrity are critically evaluated following scaffold integration into host tissues. Additionally, nano-topographical features are explored to assess scaffold performance and cellular interactions. Key architectural parameters such as porosity, pore size, and interconnectivity are analyzed for their biological implications in physiological conditions. Furthermore, the investigation extends to smart scaffolds that incorporate stimuli-responsive mechanisms through 4D printing and shape memory polymers, which mimic the complex and dynamic properties of living tissues in response to various stimuli. The review concludes by highlighting the significance of integrating stimuli-responsive characteristics as a fourth dimension in hybrid scaffolds, thereby enhancing their potential for advanced clinical applications.</div></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"6 ","pages":"Pages 85-110"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in smart hybrid scaffolds: A strategic approach for regenerative clinical applications\",\"authors\":\"Ahsan Riaz Khan , Amol D. Gholap , Navdeep Singh Grewal , Zhang Jun , Mohammad Khalid , Hai-Jun Zhang\",\"doi\":\"10.1016/j.engreg.2025.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The emergence of innovative 3D-printed hybrid scaffolds is transforming the landscape of tissue engineering by effectively addressing various regenerative clinical challenges. These scaffolds, which combine the advantageous properties of metals, polymers, and ceramics, surpass the limitations associated with single-material constructs. This review provides a comprehensive analysis of the applications of hybrid scaffolds in cardiology, orthopedics, and neural tissue regeneration, highlighting their role in advancing biomimetics, accelerating wound healing, enabling targeted drug delivery, and facilitating tumor therapy. Critical factors such as biomechanical compatibility, bioactivity, degradation rates, and mechanical integrity are critically evaluated following scaffold integration into host tissues. Additionally, nano-topographical features are explored to assess scaffold performance and cellular interactions. Key architectural parameters such as porosity, pore size, and interconnectivity are analyzed for their biological implications in physiological conditions. Furthermore, the investigation extends to smart scaffolds that incorporate stimuli-responsive mechanisms through 4D printing and shape memory polymers, which mimic the complex and dynamic properties of living tissues in response to various stimuli. The review concludes by highlighting the significance of integrating stimuli-responsive characteristics as a fourth dimension in hybrid scaffolds, thereby enhancing their potential for advanced clinical applications.</div></div>\",\"PeriodicalId\":72919,\"journal\":{\"name\":\"Engineered regeneration\",\"volume\":\"6 \",\"pages\":\"Pages 85-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineered regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666138125000039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138125000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Advances in smart hybrid scaffolds: A strategic approach for regenerative clinical applications
The emergence of innovative 3D-printed hybrid scaffolds is transforming the landscape of tissue engineering by effectively addressing various regenerative clinical challenges. These scaffolds, which combine the advantageous properties of metals, polymers, and ceramics, surpass the limitations associated with single-material constructs. This review provides a comprehensive analysis of the applications of hybrid scaffolds in cardiology, orthopedics, and neural tissue regeneration, highlighting their role in advancing biomimetics, accelerating wound healing, enabling targeted drug delivery, and facilitating tumor therapy. Critical factors such as biomechanical compatibility, bioactivity, degradation rates, and mechanical integrity are critically evaluated following scaffold integration into host tissues. Additionally, nano-topographical features are explored to assess scaffold performance and cellular interactions. Key architectural parameters such as porosity, pore size, and interconnectivity are analyzed for their biological implications in physiological conditions. Furthermore, the investigation extends to smart scaffolds that incorporate stimuli-responsive mechanisms through 4D printing and shape memory polymers, which mimic the complex and dynamic properties of living tissues in response to various stimuli. The review concludes by highlighting the significance of integrating stimuli-responsive characteristics as a fourth dimension in hybrid scaffolds, thereby enhancing their potential for advanced clinical applications.