{"title":"来自更高 SU(N) 表示的铁磁体","authors":"Alexios P. Polychronakos , Konstantinos Sfetsos","doi":"10.1016/j.nuclphysb.2025.116880","DOIUrl":null,"url":null,"abstract":"<div><div>We present a general formalism for deriving the thermodynamics of ferromagnets consisting of “atoms” carrying an arbitrary irreducible representation of <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> and coupled through long-range two-body quadratic interactions. Using this formalism, we derive the thermodynamics and phase structure of ferromagnets with atoms in the doubly symmetric or doubly antisymmetric irreducible representations. The symmetric representation leads to a paramagnetic and a ferromagnetic phase with transitions similar to the ones for the fundamental representation studied before. The antisymmetric representation presents qualitatively new features, leading to a paramagnetic and two distinct ferromagnetic phases that can coexist over a range of temperatures, two of them becoming metastable. Our results are relevant to magnetic systems of atoms with reduced symmetry in their interactions compared to the fundamental case.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1014 ","pages":"Article 116880"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferromagnets from higher SU(N) representations\",\"authors\":\"Alexios P. Polychronakos , Konstantinos Sfetsos\",\"doi\":\"10.1016/j.nuclphysb.2025.116880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a general formalism for deriving the thermodynamics of ferromagnets consisting of “atoms” carrying an arbitrary irreducible representation of <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> and coupled through long-range two-body quadratic interactions. Using this formalism, we derive the thermodynamics and phase structure of ferromagnets with atoms in the doubly symmetric or doubly antisymmetric irreducible representations. The symmetric representation leads to a paramagnetic and a ferromagnetic phase with transitions similar to the ones for the fundamental representation studied before. The antisymmetric representation presents qualitatively new features, leading to a paramagnetic and two distinct ferromagnetic phases that can coexist over a range of temperatures, two of them becoming metastable. Our results are relevant to magnetic systems of atoms with reduced symmetry in their interactions compared to the fundamental case.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1014 \",\"pages\":\"Article 116880\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325000896\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325000896","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
We present a general formalism for deriving the thermodynamics of ferromagnets consisting of “atoms” carrying an arbitrary irreducible representation of and coupled through long-range two-body quadratic interactions. Using this formalism, we derive the thermodynamics and phase structure of ferromagnets with atoms in the doubly symmetric or doubly antisymmetric irreducible representations. The symmetric representation leads to a paramagnetic and a ferromagnetic phase with transitions similar to the ones for the fundamental representation studied before. The antisymmetric representation presents qualitatively new features, leading to a paramagnetic and two distinct ferromagnetic phases that can coexist over a range of temperatures, two of them becoming metastable. Our results are relevant to magnetic systems of atoms with reduced symmetry in their interactions compared to the fundamental case.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.