H.A. Zaharin , M.J. Ghazali , N. Thachnatharen , F. Ezzah , M. Khalid
{"title":"纳米材料摩擦学研究进展:综述与展望","authors":"H.A. Zaharin , M.J. Ghazali , N. Thachnatharen , F. Ezzah , M. Khalid","doi":"10.1016/j.triboint.2025.110665","DOIUrl":null,"url":null,"abstract":"<div><div>MXenes, a class of two-dimensional materials, have emerged as promising candidates for enhancing lubrication and reducing wear in mechanical systems amidst growing concerns over energy efficiency and environmental sustainability. This review provides a comprehensive overview of MXene-based nanomaterials and their potential applications in tribology. The unique structural and chemical properties of MXenes contribute to their favorable tribological performance, which is discussed alongside various synthesis methodologies. Recent advancements in using MXenes as solid and liquid lubricants are highlighted, emphasizing their effectiveness in reducing friction and wear under different operating conditions. However, the review also addresses challenges associated with the scalability of synthesis methods and the need for experimental validation of MXene performance in real-world applications. By examining the current state of research, this work aims to explicate the specific advantages of MXenes in tribological applications and provide insights into future directions for their development.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"208 ","pages":"Article 110665"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in MXene-based nanomaterials for tribological applications: Comprehensive review and future prospects\",\"authors\":\"H.A. Zaharin , M.J. Ghazali , N. Thachnatharen , F. Ezzah , M. Khalid\",\"doi\":\"10.1016/j.triboint.2025.110665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MXenes, a class of two-dimensional materials, have emerged as promising candidates for enhancing lubrication and reducing wear in mechanical systems amidst growing concerns over energy efficiency and environmental sustainability. This review provides a comprehensive overview of MXene-based nanomaterials and their potential applications in tribology. The unique structural and chemical properties of MXenes contribute to their favorable tribological performance, which is discussed alongside various synthesis methodologies. Recent advancements in using MXenes as solid and liquid lubricants are highlighted, emphasizing their effectiveness in reducing friction and wear under different operating conditions. However, the review also addresses challenges associated with the scalability of synthesis methods and the need for experimental validation of MXene performance in real-world applications. By examining the current state of research, this work aims to explicate the specific advantages of MXenes in tribological applications and provide insights into future directions for their development.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"208 \",\"pages\":\"Article 110665\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X25001604\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25001604","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Advancements in MXene-based nanomaterials for tribological applications: Comprehensive review and future prospects
MXenes, a class of two-dimensional materials, have emerged as promising candidates for enhancing lubrication and reducing wear in mechanical systems amidst growing concerns over energy efficiency and environmental sustainability. This review provides a comprehensive overview of MXene-based nanomaterials and their potential applications in tribology. The unique structural and chemical properties of MXenes contribute to their favorable tribological performance, which is discussed alongside various synthesis methodologies. Recent advancements in using MXenes as solid and liquid lubricants are highlighted, emphasizing their effectiveness in reducing friction and wear under different operating conditions. However, the review also addresses challenges associated with the scalability of synthesis methods and the need for experimental validation of MXene performance in real-world applications. By examining the current state of research, this work aims to explicate the specific advantages of MXenes in tribological applications and provide insights into future directions for their development.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.