Xue-Wen Zhang, Rong-Hua Wang, Jie-Peng Zhang* and Xiao-Ming Chen,
{"title":"可切换和优化吸附行为的塑料孔","authors":"Xue-Wen Zhang, Rong-Hua Wang, Jie-Peng Zhang* and Xiao-Ming Chen, ","doi":"10.1021/acscentsci.4c0215510.1021/acscentsci.4c02155","DOIUrl":null,"url":null,"abstract":"<p >Similar to conventional solids, porous materials have demonstrated rigid and flexible behaviors. Here, we show that flexible pores can be not just elastic but also plastic. By variation of the hydrogen-bonding ability and steric hindrance of ligand side groups, the energy difference and barrier between metastable states of a porous framework are fine-tuned to enable the plastic behavior. All metastable pore structures can transform to the target ones in atmospheres of the target guests with sufficiently high pressures, and all shaped pores can remain unchanged after guest removal, resulting in optimized host–guest recognitions for the target guests. Up to a 6-fold increase of adsorption selectivity and 9-fold increase of purification productivity for CO<sub>2</sub> capture and coalmine CH<sub>4</sub> upgrading, and even inversion of CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> selectivity, have been achieved by reversible pore-shaping of a single plastic-pore adsorbent. The realization of plastic pores creates an opportunity for on-demand switching of adsorption and separation functions with optimized performances.</p><p >While porous materials possess rigid or flexible/elastic pores, a plastic pore is realized for the first time, which can be shaped by target guest molecules to meet needs of different applications.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 3","pages":"479–485 479–485"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c02155","citationCount":"0","resultStr":"{\"title\":\"Plastic Pores for Switchable and Optimized Adsorption Behaviors\",\"authors\":\"Xue-Wen Zhang, Rong-Hua Wang, Jie-Peng Zhang* and Xiao-Ming Chen, \",\"doi\":\"10.1021/acscentsci.4c0215510.1021/acscentsci.4c02155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Similar to conventional solids, porous materials have demonstrated rigid and flexible behaviors. Here, we show that flexible pores can be not just elastic but also plastic. By variation of the hydrogen-bonding ability and steric hindrance of ligand side groups, the energy difference and barrier between metastable states of a porous framework are fine-tuned to enable the plastic behavior. All metastable pore structures can transform to the target ones in atmospheres of the target guests with sufficiently high pressures, and all shaped pores can remain unchanged after guest removal, resulting in optimized host–guest recognitions for the target guests. Up to a 6-fold increase of adsorption selectivity and 9-fold increase of purification productivity for CO<sub>2</sub> capture and coalmine CH<sub>4</sub> upgrading, and even inversion of CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> selectivity, have been achieved by reversible pore-shaping of a single plastic-pore adsorbent. The realization of plastic pores creates an opportunity for on-demand switching of adsorption and separation functions with optimized performances.</p><p >While porous materials possess rigid or flexible/elastic pores, a plastic pore is realized for the first time, which can be shaped by target guest molecules to meet needs of different applications.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 3\",\"pages\":\"479–485 479–485\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c02155\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.4c02155\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c02155","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Plastic Pores for Switchable and Optimized Adsorption Behaviors
Similar to conventional solids, porous materials have demonstrated rigid and flexible behaviors. Here, we show that flexible pores can be not just elastic but also plastic. By variation of the hydrogen-bonding ability and steric hindrance of ligand side groups, the energy difference and barrier between metastable states of a porous framework are fine-tuned to enable the plastic behavior. All metastable pore structures can transform to the target ones in atmospheres of the target guests with sufficiently high pressures, and all shaped pores can remain unchanged after guest removal, resulting in optimized host–guest recognitions for the target guests. Up to a 6-fold increase of adsorption selectivity and 9-fold increase of purification productivity for CO2 capture and coalmine CH4 upgrading, and even inversion of CO2/C2H2 selectivity, have been achieved by reversible pore-shaping of a single plastic-pore adsorbent. The realization of plastic pores creates an opportunity for on-demand switching of adsorption and separation functions with optimized performances.
While porous materials possess rigid or flexible/elastic pores, a plastic pore is realized for the first time, which can be shaped by target guest molecules to meet needs of different applications.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.