Victor Somtochukwu Mbanugo, Boluwatife Stephen Ojo, Ta Chun Lin, Yue-Wern Huang, Marek Locmelis and Daoru Han*,
{"title":"低温大气等离子体(CAP)在水和土壤中降解全氟和多氟烷基物质(PFAS)的研究进展","authors":"Victor Somtochukwu Mbanugo, Boluwatife Stephen Ojo, Ta Chun Lin, Yue-Wern Huang, Marek Locmelis and Daoru Han*, ","doi":"10.1021/acsphyschemau.4c0009210.1021/acsphyschemau.4c00092","DOIUrl":null,"url":null,"abstract":"<p >Per- and polyfluoroalkyl substances (PFASs) are persistent organic chemicals found in numerous industrial applications and everyday products. The excessive amounts of PFASs in water and soil, together with their link to severe health issues, have prompted substantial public concerns, making their removal from the environment a necessity. Existing degradation techniques are frequently lacking due to their low efficiency, cost-effectiveness, and potential for secondary contamination. Cold Atmospheric Plasma (CAP) technology has emerged as a promising alternative, utilizing energized reactive species to break down PFASs under ambient conditions. Therefore, this review examines the efficacy and effectiveness of CAP in degrading PFASs by reviewing various CAP setups and examining the key factors involved. This review also aims to further the development of CAP as a viable solution for PFAS degradation by addressing outstanding challenges and future directions in soil and water treatment.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 2","pages":"117–133 117–133"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00092","citationCount":"0","resultStr":"{\"title\":\"Per- and Polyfluoroalkyl Substance (PFAS) Degradation in Water and Soil Using Cold Atmospheric Plasma (CAP): A Review\",\"authors\":\"Victor Somtochukwu Mbanugo, Boluwatife Stephen Ojo, Ta Chun Lin, Yue-Wern Huang, Marek Locmelis and Daoru Han*, \",\"doi\":\"10.1021/acsphyschemau.4c0009210.1021/acsphyschemau.4c00092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Per- and polyfluoroalkyl substances (PFASs) are persistent organic chemicals found in numerous industrial applications and everyday products. The excessive amounts of PFASs in water and soil, together with their link to severe health issues, have prompted substantial public concerns, making their removal from the environment a necessity. Existing degradation techniques are frequently lacking due to their low efficiency, cost-effectiveness, and potential for secondary contamination. Cold Atmospheric Plasma (CAP) technology has emerged as a promising alternative, utilizing energized reactive species to break down PFASs under ambient conditions. Therefore, this review examines the efficacy and effectiveness of CAP in degrading PFASs by reviewing various CAP setups and examining the key factors involved. This review also aims to further the development of CAP as a viable solution for PFAS degradation by addressing outstanding challenges and future directions in soil and water treatment.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"5 2\",\"pages\":\"117–133 117–133\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00092\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
全氟烷基和多氟烷基物质(PFASs)是一种持久性有机化学物质,存在于众多工业应用和日常产品中。PFASs 在水和土壤中的超量存在及其与严重健康问题的联系引起了公众的极大关注,因此必须将其从环境中清除。现有的降解技术由于效率低、成本效益差以及可能造成二次污染等原因,往往缺乏实用性。冷大气等离子体(CAP)技术利用通电反应物在环境条件下分解全氟辛烷磺酸,是一种很有前途的替代技术。因此,本综述通过回顾各种 CAP 设置并研究其中的关键因素,探讨 CAP 在降解 PFAS 方面的功效和效果。本综述还旨在通过探讨土壤和水处理方面的突出挑战和未来发展方向,进一步将 CAP 发展成为降解 PFAS 的可行解决方案。
Per- and Polyfluoroalkyl Substance (PFAS) Degradation in Water and Soil Using Cold Atmospheric Plasma (CAP): A Review
Per- and polyfluoroalkyl substances (PFASs) are persistent organic chemicals found in numerous industrial applications and everyday products. The excessive amounts of PFASs in water and soil, together with their link to severe health issues, have prompted substantial public concerns, making their removal from the environment a necessity. Existing degradation techniques are frequently lacking due to their low efficiency, cost-effectiveness, and potential for secondary contamination. Cold Atmospheric Plasma (CAP) technology has emerged as a promising alternative, utilizing energized reactive species to break down PFASs under ambient conditions. Therefore, this review examines the efficacy and effectiveness of CAP in degrading PFASs by reviewing various CAP setups and examining the key factors involved. This review also aims to further the development of CAP as a viable solution for PFAS degradation by addressing outstanding challenges and future directions in soil and water treatment.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis