通过改变交换偏置方向调整Pt/IrMn/Py三层膜的自旋-轨道转矩效率

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qingtao Xia, Junda Qu, Tianren Luo, Shiyang Lu, Qiang Li, Xueying Zhang, Huaiwen Yang*, Cong Wang*, Dapeng Zhu* and Weisheng Zhao, 
{"title":"通过改变交换偏置方向调整Pt/IrMn/Py三层膜的自旋-轨道转矩效率","authors":"Qingtao Xia,&nbsp;Junda Qu,&nbsp;Tianren Luo,&nbsp;Shiyang Lu,&nbsp;Qiang Li,&nbsp;Xueying Zhang,&nbsp;Huaiwen Yang*,&nbsp;Cong Wang*,&nbsp;Dapeng Zhu* and Weisheng Zhao,&nbsp;","doi":"10.1021/acsami.4c2228810.1021/acsami.4c22288","DOIUrl":null,"url":null,"abstract":"<p >Spin transport, as the core of spintronics, provides an alternative to electron charge transport used in conventional electronics. Recent studies have demonstrated that spin transport through antiferromagnetic (AFM) insulators would be affected by the relative orientation of the spin polarization (<b><i>s</i></b>) and the Néel vector (<b><i>n</i></b>). However, there has been limited research on this transport regime in metallic AFMs. Here, we experimentally investigated the relative direction between <b><i>s</i></b> and <b><i>n</i></b> in relation to spin transport in the Pt/IrMn/Py trilayer. Due to the exchange bias coupling at the AFM/ferromagnetic interface, <b><i>n</i></b> can be aligned along the direction of the annealing (or cooling) field. Spin-torque ferromagnetic resonance (ST-FMR) and magnetization switching measurements were performed at different directions of the cooling field. The results show that the value of spin–orbit torque (SOT) efficiency and critical switching current density depends on the relative orientation between <b><i>s</i></b> and <b><i>n</i></b>. Our results indicate that controlling <b><i>n</i></b> of the metallic AFM can be an effective method for modulating SOT efficiency in AFM-based spintronic devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 12","pages":"19062–19069 19062–19069"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the Spin–Orbit Torque Efficiency via Exchange Bias Direction Modification in Pt/IrMn/Py Trilayers\",\"authors\":\"Qingtao Xia,&nbsp;Junda Qu,&nbsp;Tianren Luo,&nbsp;Shiyang Lu,&nbsp;Qiang Li,&nbsp;Xueying Zhang,&nbsp;Huaiwen Yang*,&nbsp;Cong Wang*,&nbsp;Dapeng Zhu* and Weisheng Zhao,&nbsp;\",\"doi\":\"10.1021/acsami.4c2228810.1021/acsami.4c22288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Spin transport, as the core of spintronics, provides an alternative to electron charge transport used in conventional electronics. Recent studies have demonstrated that spin transport through antiferromagnetic (AFM) insulators would be affected by the relative orientation of the spin polarization (<b><i>s</i></b>) and the Néel vector (<b><i>n</i></b>). However, there has been limited research on this transport regime in metallic AFMs. Here, we experimentally investigated the relative direction between <b><i>s</i></b> and <b><i>n</i></b> in relation to spin transport in the Pt/IrMn/Py trilayer. Due to the exchange bias coupling at the AFM/ferromagnetic interface, <b><i>n</i></b> can be aligned along the direction of the annealing (or cooling) field. Spin-torque ferromagnetic resonance (ST-FMR) and magnetization switching measurements were performed at different directions of the cooling field. The results show that the value of spin–orbit torque (SOT) efficiency and critical switching current density depends on the relative orientation between <b><i>s</i></b> and <b><i>n</i></b>. Our results indicate that controlling <b><i>n</i></b> of the metallic AFM can be an effective method for modulating SOT efficiency in AFM-based spintronic devices.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 12\",\"pages\":\"19062–19069 19062–19069\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c22288\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c22288","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自旋输运作为自旋电子学的核心,为传统电子学中的电荷输运提供了一种替代方法。近年来的研究表明,自旋在反铁磁(AFM)绝缘体中的输运会受到自旋极化(s)和nassiel矢量(n)的相对取向的影响。然而,对金属AFM中这种输运机制的研究有限。在这里,我们通过实验研究了Pt/IrMn/Py三层中s和n之间的相对方向与自旋输运的关系。由于AFM/铁磁界面处的交换偏置耦合,n可以沿退火(或冷却)场方向排列。在冷却场的不同方向上进行了自旋转矩铁磁共振(ST-FMR)和磁化开关测量。结果表明,自旋轨道转矩(SOT)效率和临界开关电流密度的值取决于s和n之间的相对取向。研究结果表明,控制金属原子力显微镜的n可以有效地调节基于原子力显微镜的自旋电子器件的SOT效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning the Spin–Orbit Torque Efficiency via Exchange Bias Direction Modification in Pt/IrMn/Py Trilayers

Tuning the Spin–Orbit Torque Efficiency via Exchange Bias Direction Modification in Pt/IrMn/Py Trilayers

Spin transport, as the core of spintronics, provides an alternative to electron charge transport used in conventional electronics. Recent studies have demonstrated that spin transport through antiferromagnetic (AFM) insulators would be affected by the relative orientation of the spin polarization (s) and the Néel vector (n). However, there has been limited research on this transport regime in metallic AFMs. Here, we experimentally investigated the relative direction between s and n in relation to spin transport in the Pt/IrMn/Py trilayer. Due to the exchange bias coupling at the AFM/ferromagnetic interface, n can be aligned along the direction of the annealing (or cooling) field. Spin-torque ferromagnetic resonance (ST-FMR) and magnetization switching measurements were performed at different directions of the cooling field. The results show that the value of spin–orbit torque (SOT) efficiency and critical switching current density depends on the relative orientation between s and n. Our results indicate that controlling n of the metallic AFM can be an effective method for modulating SOT efficiency in AFM-based spintronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信