利用高势垒异质界面促进室温n型碲化铋热电材料

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haowen Chen, Kaiyi Luo, Pingping Qian, Yixiao Deng, An Li, Qiang Sun, Lei Yang, Yuquan Liu, Zhengshang Wang, Guang-Kun Ren, Qian Cao and Jun Tang*, 
{"title":"利用高势垒异质界面促进室温n型碲化铋热电材料","authors":"Haowen Chen,&nbsp;Kaiyi Luo,&nbsp;Pingping Qian,&nbsp;Yixiao Deng,&nbsp;An Li,&nbsp;Qiang Sun,&nbsp;Lei Yang,&nbsp;Yuquan Liu,&nbsp;Zhengshang Wang,&nbsp;Guang-Kun Ren,&nbsp;Qian Cao and Jun Tang*,&nbsp;","doi":"10.1021/acsami.5c0140010.1021/acsami.5c01400","DOIUrl":null,"url":null,"abstract":"<p >The donor effect of polycrystalline n-type bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) during sample preparation usually results in the peak thermoelectric figure of merit (ZT) at temperatures above 400 K, severely restricting its application in the room-temperature (RT) range. A leap in RT performance requires innovative strategies that replace conventional methods of regulating point defects with limited effectiveness. We demonstrate excellent thermoelectric performance with an RT figure of merit, ZT = 1.2, and a maximum ZT = 1.3 at 325 K, by regulating the high-potential barrier heterointerfaces composed of La<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) and Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> (BTS). The created energy barriers at grain boundaries scatter and localize carriers through O–Bi ionic bonding and O–Te hybridization, enhancing the density of states in adjacent regions and leading to a rapid rise in the RT Seebeck coefficient (from 148.67 μV K<sup>–1</sup> to 222.84 μV K<sup>–1</sup> at 300 K). Another aspect of La<sub>2</sub>O<sub>3</sub> NPs, as the second term of nano-oxide, introduces multiscale defect-scattering phonons, thereby enhancing thermal performance. Finally, at temperature difference <i>ΔT</i> = 10 K, a maximum output voltage and power, <i>V</i><sub>max</sub> = 239.73 mV and <i>P</i><sub>max</sub>= 10.50 mW, can be achieved with the fabricated TE module. Our findings underscore the full potential for promoting the performance of thermoelectric materials in the lower temperature region via high-energy barrier interface engineering.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 12","pages":"18800–18812 18800–18812"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting Room-Temperature n-type Bismuth Telluride Thermoelectrics via High-Potential Barrier Heterointerfaces\",\"authors\":\"Haowen Chen,&nbsp;Kaiyi Luo,&nbsp;Pingping Qian,&nbsp;Yixiao Deng,&nbsp;An Li,&nbsp;Qiang Sun,&nbsp;Lei Yang,&nbsp;Yuquan Liu,&nbsp;Zhengshang Wang,&nbsp;Guang-Kun Ren,&nbsp;Qian Cao and Jun Tang*,&nbsp;\",\"doi\":\"10.1021/acsami.5c0140010.1021/acsami.5c01400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The donor effect of polycrystalline n-type bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) during sample preparation usually results in the peak thermoelectric figure of merit (ZT) at temperatures above 400 K, severely restricting its application in the room-temperature (RT) range. A leap in RT performance requires innovative strategies that replace conventional methods of regulating point defects with limited effectiveness. We demonstrate excellent thermoelectric performance with an RT figure of merit, ZT = 1.2, and a maximum ZT = 1.3 at 325 K, by regulating the high-potential barrier heterointerfaces composed of La<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) and Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> (BTS). The created energy barriers at grain boundaries scatter and localize carriers through O–Bi ionic bonding and O–Te hybridization, enhancing the density of states in adjacent regions and leading to a rapid rise in the RT Seebeck coefficient (from 148.67 μV K<sup>–1</sup> to 222.84 μV K<sup>–1</sup> at 300 K). Another aspect of La<sub>2</sub>O<sub>3</sub> NPs, as the second term of nano-oxide, introduces multiscale defect-scattering phonons, thereby enhancing thermal performance. Finally, at temperature difference <i>ΔT</i> = 10 K, a maximum output voltage and power, <i>V</i><sub>max</sub> = 239.73 mV and <i>P</i><sub>max</sub>= 10.50 mW, can be achieved with the fabricated TE module. Our findings underscore the full potential for promoting the performance of thermoelectric materials in the lower temperature region via high-energy barrier interface engineering.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 12\",\"pages\":\"18800–18812 18800–18812\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c01400\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c01400","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在样品制备过程中,由于多晶n型碲化铋(Bi2Te3)的施主效应,通常会在400 K以上产生热电性能图(ZT)峰值,严重限制了其在室温(RT)范围内的应用。RT性能的飞跃需要创新的策略来取代传统的有效调节点缺陷的方法。我们通过调节由La2O3纳米颗粒(NPs)和Bi2Te2.7Se0.3 (BTS)组成的高势势势垒异质界面,证明了优异的热电性能,在325 K时,RT值为ZT = 1.2,最大ZT = 1.3。在晶界处产生的能垒通过O-Bi离子键和O-Te杂化使载流子散射和局域化,增强了相邻区域的态密度,导致RT - Seebeck系数迅速上升(在300 K时从148.67 μV K - 1上升到222.84 μV K - 1)。La2O3 NPs的另一方面,作为纳米氧化物的第二项,引入了多尺度缺陷散射声子,从而提高了热性能。最后,在温度差ΔT = 10 K时,制造的TE模块可以实现最大输出电压和功率,Vmax = 239.73 mV, Pmax= 10.50 mW。我们的发现强调了通过高能势垒界面工程在低温区域提升热电材料性能的全部潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Promoting Room-Temperature n-type Bismuth Telluride Thermoelectrics via High-Potential Barrier Heterointerfaces

Promoting Room-Temperature n-type Bismuth Telluride Thermoelectrics via High-Potential Barrier Heterointerfaces

The donor effect of polycrystalline n-type bismuth telluride (Bi2Te3) during sample preparation usually results in the peak thermoelectric figure of merit (ZT) at temperatures above 400 K, severely restricting its application in the room-temperature (RT) range. A leap in RT performance requires innovative strategies that replace conventional methods of regulating point defects with limited effectiveness. We demonstrate excellent thermoelectric performance with an RT figure of merit, ZT = 1.2, and a maximum ZT = 1.3 at 325 K, by regulating the high-potential barrier heterointerfaces composed of La2O3 nanoparticles (NPs) and Bi2Te2.7Se0.3 (BTS). The created energy barriers at grain boundaries scatter and localize carriers through O–Bi ionic bonding and O–Te hybridization, enhancing the density of states in adjacent regions and leading to a rapid rise in the RT Seebeck coefficient (from 148.67 μV K–1 to 222.84 μV K–1 at 300 K). Another aspect of La2O3 NPs, as the second term of nano-oxide, introduces multiscale defect-scattering phonons, thereby enhancing thermal performance. Finally, at temperature difference ΔT = 10 K, a maximum output voltage and power, Vmax = 239.73 mV and Pmax= 10.50 mW, can be achieved with the fabricated TE module. Our findings underscore the full potential for promoting the performance of thermoelectric materials in the lower temperature region via high-energy barrier interface engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信