加楠花干燥的水分含量及干燥动力学模型分析

Q1 Social Sciences
Tutik Muji Setyoningrum , Heri Septya Kusuma , Salsabila Hana Umamah , Naftalisda Elveta Salsabila , Handoko Darmokoesoemo , Andrew Nosakhare Amenaghawon
{"title":"加楠花干燥的水分含量及干燥动力学模型分析","authors":"Tutik Muji Setyoningrum ,&nbsp;Heri Septya Kusuma ,&nbsp;Salsabila Hana Umamah ,&nbsp;Naftalisda Elveta Salsabila ,&nbsp;Handoko Darmokoesoemo ,&nbsp;Andrew Nosakhare Amenaghawon","doi":"10.1016/j.sajce.2025.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>The inefficient drying process of <em>Cananga odorata</em> flowers leads to significant quality degradation and energy consumption. This study investigates the drying kinetics of <em>Cananga odorata</em> using oven-assisted drying at 50 °C, aiming to identify the most suitable kinetic model for optimizing the process. Moisture content, moisture ratio, and drying rate were analyzed, and three models—Lewis, Page, and Henderson &amp; Pabis—were evaluated using statistical parameters (R<sup>2</sup>, SSE, RMSE, MSE, and X<sup>2</sup>). The results showed that the Page model provided the best fit (R<sup>2</sup> = 0.9970, SSE = 0.0039, RMSE = 0.0180), accurately describing the drying behavior. The drying process exhibited an initial rapid moisture loss phase followed by a slower drying period. These findings offer critical insights into optimizing <em>Cananga odorata</em> drying processes for industrial applications.</div></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"52 ","pages":"Pages 292-299"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of moisture content and drying kinetics model for drying of Cananga odorata flowers\",\"authors\":\"Tutik Muji Setyoningrum ,&nbsp;Heri Septya Kusuma ,&nbsp;Salsabila Hana Umamah ,&nbsp;Naftalisda Elveta Salsabila ,&nbsp;Handoko Darmokoesoemo ,&nbsp;Andrew Nosakhare Amenaghawon\",\"doi\":\"10.1016/j.sajce.2025.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The inefficient drying process of <em>Cananga odorata</em> flowers leads to significant quality degradation and energy consumption. This study investigates the drying kinetics of <em>Cananga odorata</em> using oven-assisted drying at 50 °C, aiming to identify the most suitable kinetic model for optimizing the process. Moisture content, moisture ratio, and drying rate were analyzed, and three models—Lewis, Page, and Henderson &amp; Pabis—were evaluated using statistical parameters (R<sup>2</sup>, SSE, RMSE, MSE, and X<sup>2</sup>). The results showed that the Page model provided the best fit (R<sup>2</sup> = 0.9970, SSE = 0.0039, RMSE = 0.0180), accurately describing the drying behavior. The drying process exhibited an initial rapid moisture loss phase followed by a slower drying period. These findings offer critical insights into optimizing <em>Cananga odorata</em> drying processes for industrial applications.</div></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"52 \",\"pages\":\"Pages 292-299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1026918525000290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918525000290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

果香花的低效率干燥过程导致了果香花的质量下降和能量消耗。在50°C的烘箱辅助干燥条件下,对加南加的干燥动力学进行了研究,旨在确定最合适的动力学模型来优化工艺。分析了水分含量、水分比和干燥速度,并对lewis、Page和Henderson等三种模型进行了分析。使用统计参数(R2、SSE、RMSE、MSE和X2)评估pabis。结果表明,Page模型拟合最佳(R2 = 0.9970, SSE = 0.0039, RMSE = 0.0180),能较准确地描述干燥行为。干燥过程表现为最初的快速失湿阶段,随后是较慢的干燥期。这些发现为优化工业应用的甘南加干燥过程提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of moisture content and drying kinetics model for drying of Cananga odorata flowers

Analysis of moisture content and drying kinetics model for drying of Cananga odorata flowers
The inefficient drying process of Cananga odorata flowers leads to significant quality degradation and energy consumption. This study investigates the drying kinetics of Cananga odorata using oven-assisted drying at 50 °C, aiming to identify the most suitable kinetic model for optimizing the process. Moisture content, moisture ratio, and drying rate were analyzed, and three models—Lewis, Page, and Henderson & Pabis—were evaluated using statistical parameters (R2, SSE, RMSE, MSE, and X2). The results showed that the Page model provided the best fit (R2 = 0.9970, SSE = 0.0039, RMSE = 0.0180), accurately describing the drying behavior. The drying process exhibited an initial rapid moisture loss phase followed by a slower drying period. These findings offer critical insights into optimizing Cananga odorata drying processes for industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
100
审稿时长
33 weeks
期刊介绍: The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信