磁性阳离子分布于 A 和 B 位点的尖晶石高熵氧化物中的磁致性行为

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Neha Sharma, Nikita Sharma, Tirthankar Chakraborty, Sourav Marik
{"title":"磁性阳离子分布于 A 和 B 位点的尖晶石高熵氧化物中的磁致性行为","authors":"Neha Sharma,&nbsp;Nikita Sharma,&nbsp;Tirthankar Chakraborty,&nbsp;Sourav Marik","doi":"10.1016/j.physb.2025.417143","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetocaloric effect and relative cooling power of the high-entropy oxide (Ni<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub></math></span>Mg<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub></math></span>Co<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub></math></span>Zn<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub></math></span>)(Mn<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>666</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>666</mn></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>666</mn></mrow></msub></math></span>)O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> have been systematically investigated. This material crystallizes in a cubic structure and undergoes a ferrimagnetic to paramagnetic transition. The maximum magnetic entropy change <span><math><mi>Δ</mi></math></span> S<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span> and relative cooling power were calculated for a field change from 100 Oe to 20 kOe, yielding values of 0.522 J/kg K and a consistently high RCP over a broad temperature range, respectively. The scaling approach near the transition temperature to study the behavior of magnetic entropy change <span><math><mi>Δ</mi></math></span> S<span><math><msub><mrow></mrow><mrow><mi>M</mi></mrow></msub></math></span>(T,H) revealed that, under high magnetic fields, the <span><math><mi>Δ</mi></math></span> S<span><math><msub><mrow></mrow><mrow><mi>M</mi></mrow></msub></math></span>(T,H) curves collapse into a single universal curve independent of temperature or external field. The theoretical model indicates that electron–electron interactions, magnetoelastic coupling, and electron–phonon scattering are crucial factors in determining the magnetocaloric effect of the system. These findings provide valuable insights into the potential of high-entropy oxides for solid-state cooling applications and open new avenues for exploring magnetocaloric properties.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"707 ","pages":"Article 417143"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetocaloric behavior in a spinel high-entropy oxide with magnetic cations distributed across A and B sites\",\"authors\":\"Neha Sharma,&nbsp;Nikita Sharma,&nbsp;Tirthankar Chakraborty,&nbsp;Sourav Marik\",\"doi\":\"10.1016/j.physb.2025.417143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetocaloric effect and relative cooling power of the high-entropy oxide (Ni<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub></math></span>Mg<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub></math></span>Co<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub></math></span>Zn<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></msub></math></span>)(Mn<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>666</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>666</mn></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>666</mn></mrow></msub></math></span>)O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> have been systematically investigated. This material crystallizes in a cubic structure and undergoes a ferrimagnetic to paramagnetic transition. The maximum magnetic entropy change <span><math><mi>Δ</mi></math></span> S<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span> and relative cooling power were calculated for a field change from 100 Oe to 20 kOe, yielding values of 0.522 J/kg K and a consistently high RCP over a broad temperature range, respectively. The scaling approach near the transition temperature to study the behavior of magnetic entropy change <span><math><mi>Δ</mi></math></span> S<span><math><msub><mrow></mrow><mrow><mi>M</mi></mrow></msub></math></span>(T,H) revealed that, under high magnetic fields, the <span><math><mi>Δ</mi></math></span> S<span><math><msub><mrow></mrow><mrow><mi>M</mi></mrow></msub></math></span>(T,H) curves collapse into a single universal curve independent of temperature or external field. The theoretical model indicates that electron–electron interactions, magnetoelastic coupling, and electron–phonon scattering are crucial factors in determining the magnetocaloric effect of the system. These findings provide valuable insights into the potential of high-entropy oxides for solid-state cooling applications and open new avenues for exploring magnetocaloric properties.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"707 \",\"pages\":\"Article 417143\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625002601\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625002601","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

系统地研究了高熵氧化物(Ni0.2Mg0.2Co0.2Cu0.2Zn0.2)(Mn0.666Fe0.666Cr0.666)O4的磁热效应和相对冷却能力。这种材料结晶成立方结构,并经历铁磁到顺磁的转变。计算了100 ~ 20 Oe磁场变化时的最大磁熵变化Δ Smax和相对冷却功率,分别为0.522 J/kg K和在较宽温度范围内保持较高的RCP。用标度法研究转变温度附近的磁熵变化行为Δ SM(T,H)表明,在高磁场作用下,Δ SM(T,H)曲线坍缩成一条独立于温度和外场的通用曲线。理论模型表明,电子-电子相互作用、磁弹性耦合和电子-声子散射是决定系统磁热效应的关键因素。这些发现为高熵氧化物在固态冷却应用中的潜力提供了有价值的见解,并为探索磁热学性质开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetocaloric behavior in a spinel high-entropy oxide with magnetic cations distributed across A and B sites
Magnetocaloric effect and relative cooling power of the high-entropy oxide (Ni0.2Mg0.2Co0.2Cu0.2Zn0.2)(Mn0.666Fe0.666Cr0.666)O4 have been systematically investigated. This material crystallizes in a cubic structure and undergoes a ferrimagnetic to paramagnetic transition. The maximum magnetic entropy change Δ Smax and relative cooling power were calculated for a field change from 100 Oe to 20 kOe, yielding values of 0.522 J/kg K and a consistently high RCP over a broad temperature range, respectively. The scaling approach near the transition temperature to study the behavior of magnetic entropy change Δ SM(T,H) revealed that, under high magnetic fields, the Δ SM(T,H) curves collapse into a single universal curve independent of temperature or external field. The theoretical model indicates that electron–electron interactions, magnetoelastic coupling, and electron–phonon scattering are crucial factors in determining the magnetocaloric effect of the system. These findings provide valuable insights into the potential of high-entropy oxides for solid-state cooling applications and open new avenues for exploring magnetocaloric properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信