组分选择性共价有机框架界面对稳定锂金属阳极的异质-段电荷诱导耦合催化作用

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-03-25 DOI:10.1021/acsnano.4c18473
Zikang Chen, Jiajie Pan, Wenzhi Huang, Kaixiang Shi, Zihao Yang, Hao Wu, Suqing Wei, Guoxing Jiang, Wenwu Zou, Rui Zhang, Xu Li, Quanbing Liu
{"title":"组分选择性共价有机框架界面对稳定锂金属阳极的异质-段电荷诱导耦合催化作用","authors":"Zikang Chen, Jiajie Pan, Wenzhi Huang, Kaixiang Shi, Zihao Yang, Hao Wu, Suqing Wei, Guoxing Jiang, Wenwu Zou, Rui Zhang, Xu Li, Quanbing Liu","doi":"10.1021/acsnano.4c18473","DOIUrl":null,"url":null,"abstract":"Serialized lithium traveling on the solid electrolyte interphase (SEI) of the metal anode plays a dominant role in high-energy-density lithium metal batteries. Unsatisfactorily, irregular native SEI suffers from the Li<sup>+</sup> local deposition and possesses low inorganic component content, which exacerbates the growth of lithium dendrites and leads to poor battery performance. Purposefully, we fabricated the porphyrin-based covalent organic frameworks (COF-366 and COF-367) as lithium metal anode interfaces. Concretely, heterogenetic segments within COFs nodes allocate electron situations to induce component-selective catalysis, of which electron-rich nitrogen atom sites urge the N–S cleavage of bis(trifluoromethylsulfonyl)azanide (TFSI<sup>–</sup>) and C–C breakage of 1,2-dimethoxyethane (DME), while electron-deficient benzene sites facilitate the C–O cleavage of 1,3-dioxolane (DOL), constructing a rich Li<sub>2</sub>O/LiF-rich modification of COFs interface. The well-constructed interface facilitates rapid Li<sup>+</sup> migration, distributes charge evenly, and further increases the Li<sup>+</sup> flux, which achieves uniform Li<sup>+</sup> deposition and suppresses dendrite growth. Consequently, the COF-366@Li anode displayed outstanding capacity stability at a high current density of 5C after 400 cycles with a capacity of 53.37 mAh g<sup>–1</sup> (70.99%). The COF-366@Li||LFP pouch cell further validated its practical application with an impressive capacity of 120.37 mAh g<sup>–1</sup> and an excellent capacity retention of 92.42% after 43 cycles with a high cathode loading of 295.2 mg. This study demonstrates the feasibility of heterogeneity-segment of customized-type COFs to induce component-selective charge-coupling catalysis toward electrolytes and manipulate SEI inorganic components for stabilizing lithium metal anode.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"9 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneity-Segment Charge-Induced-Coupling Catalysis of Component-Selective-Type Covalent Organic Frameworks Interface toward Stabilizing Lithium Metal Anode\",\"authors\":\"Zikang Chen, Jiajie Pan, Wenzhi Huang, Kaixiang Shi, Zihao Yang, Hao Wu, Suqing Wei, Guoxing Jiang, Wenwu Zou, Rui Zhang, Xu Li, Quanbing Liu\",\"doi\":\"10.1021/acsnano.4c18473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serialized lithium traveling on the solid electrolyte interphase (SEI) of the metal anode plays a dominant role in high-energy-density lithium metal batteries. Unsatisfactorily, irregular native SEI suffers from the Li<sup>+</sup> local deposition and possesses low inorganic component content, which exacerbates the growth of lithium dendrites and leads to poor battery performance. Purposefully, we fabricated the porphyrin-based covalent organic frameworks (COF-366 and COF-367) as lithium metal anode interfaces. Concretely, heterogenetic segments within COFs nodes allocate electron situations to induce component-selective catalysis, of which electron-rich nitrogen atom sites urge the N–S cleavage of bis(trifluoromethylsulfonyl)azanide (TFSI<sup>–</sup>) and C–C breakage of 1,2-dimethoxyethane (DME), while electron-deficient benzene sites facilitate the C–O cleavage of 1,3-dioxolane (DOL), constructing a rich Li<sub>2</sub>O/LiF-rich modification of COFs interface. The well-constructed interface facilitates rapid Li<sup>+</sup> migration, distributes charge evenly, and further increases the Li<sup>+</sup> flux, which achieves uniform Li<sup>+</sup> deposition and suppresses dendrite growth. Consequently, the COF-366@Li anode displayed outstanding capacity stability at a high current density of 5C after 400 cycles with a capacity of 53.37 mAh g<sup>–1</sup> (70.99%). The COF-366@Li||LFP pouch cell further validated its practical application with an impressive capacity of 120.37 mAh g<sup>–1</sup> and an excellent capacity retention of 92.42% after 43 cycles with a high cathode loading of 295.2 mg. This study demonstrates the feasibility of heterogeneity-segment of customized-type COFs to induce component-selective charge-coupling catalysis toward electrolytes and manipulate SEI inorganic components for stabilizing lithium metal anode.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c18473\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18473","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在高能量密度锂金属电池中,金属负极固体电解质相间层(SEI)上的序列化锂游离起着主导作用。令人不满的是,不规则的原生 SEI 受 Li+ 局部沉积的影响,无机成分含量低,加剧了锂枝晶的生长,导致电池性能低下。为此,我们制作了卟啉基共价有机框架(COF-366 和 COF-367)作为锂金属负极界面。具体来说,COFs 节点内的异质段分配电子情况以诱导组分选择性催化,其中电子丰富的氮原子位点可促进双(三氟甲基磺酰基)氮杂酰胺(TFSI-)的 N-S 裂解和 1.2-二甲氧基乙烷(Dimethoxyethane)的 C-C 断裂、2-dimethoxyethane (DME),而缺电子的苯位点则促进了 1,3-dioxolane (DOL) 的 C-O 裂解,从而构建了一个富含 Li2O/LiF 的 COFs 改性界面。构造良好的界面有利于 Li+ 的快速迁移,使电荷分布均匀,并进一步提高了 Li+ 通量,从而实现了 Li+ 的均匀沉积并抑制了枝晶的生长。因此,在 5C 的高电流密度下,COF-366@Li 阳极经过 400 次循环后显示出出色的容量稳定性,容量为 53.37 mAh g-1(70.99%)。COF-366@Li||LFP 袋式电池进一步验证了其实际应用,在阴极负载高达 295.2 毫克的情况下,经过 43 次循环后,电池容量达到 120.37 mAh g-1,容量保持率高达 92.42%。这项研究证明了定制型 COF 的异质性分段在诱导电解质的成分选择性电荷耦合催化和操纵 SEI 无机成分以稳定锂金属负极方面的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heterogeneity-Segment Charge-Induced-Coupling Catalysis of Component-Selective-Type Covalent Organic Frameworks Interface toward Stabilizing Lithium Metal Anode

Heterogeneity-Segment Charge-Induced-Coupling Catalysis of Component-Selective-Type Covalent Organic Frameworks Interface toward Stabilizing Lithium Metal Anode
Serialized lithium traveling on the solid electrolyte interphase (SEI) of the metal anode plays a dominant role in high-energy-density lithium metal batteries. Unsatisfactorily, irregular native SEI suffers from the Li+ local deposition and possesses low inorganic component content, which exacerbates the growth of lithium dendrites and leads to poor battery performance. Purposefully, we fabricated the porphyrin-based covalent organic frameworks (COF-366 and COF-367) as lithium metal anode interfaces. Concretely, heterogenetic segments within COFs nodes allocate electron situations to induce component-selective catalysis, of which electron-rich nitrogen atom sites urge the N–S cleavage of bis(trifluoromethylsulfonyl)azanide (TFSI) and C–C breakage of 1,2-dimethoxyethane (DME), while electron-deficient benzene sites facilitate the C–O cleavage of 1,3-dioxolane (DOL), constructing a rich Li2O/LiF-rich modification of COFs interface. The well-constructed interface facilitates rapid Li+ migration, distributes charge evenly, and further increases the Li+ flux, which achieves uniform Li+ deposition and suppresses dendrite growth. Consequently, the COF-366@Li anode displayed outstanding capacity stability at a high current density of 5C after 400 cycles with a capacity of 53.37 mAh g–1 (70.99%). The COF-366@Li||LFP pouch cell further validated its practical application with an impressive capacity of 120.37 mAh g–1 and an excellent capacity retention of 92.42% after 43 cycles with a high cathode loading of 295.2 mg. This study demonstrates the feasibility of heterogeneity-segment of customized-type COFs to induce component-selective charge-coupling catalysis toward electrolytes and manipulate SEI inorganic components for stabilizing lithium metal anode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信