Yangbo Lv , Weili Mao , Hangbiao Jin , Jianli Qu , Dongjuan He
{"title":"人类暴露于6PPD和6PPDQ与结直肠癌的关系:一项混合分析","authors":"Yangbo Lv , Weili Mao , Hangbiao Jin , Jianli Qu , Dongjuan He","doi":"10.1016/j.envpol.2025.126114","DOIUrl":null,"url":null,"abstract":"<div><div><em>N</em>-(1,3-dimethylbutyl)-<em>N</em>′-phenyl-<em>p</em>-phenylenediamine (6PPD) and its oxidation product, 6PPD-quinone (6PPDQ), are widely present in the environment. Toxicological studies have demonstrated that they can induce adverse health effects on the intestinal system. However, epidemiological studies examining the association between human 6PPD and 6PPDQ exposure and colorectal cancer (CRC) risk remain scarce. In this study, human urinary 6PPD and 6PPDQ concentrations were analyzed in 329 controls and 367 CRC cases from Quzhou, China. A combination of analyses, including unconditional logistic regression, Bayesian kernel machine regression (BKMR), and restricted cubic spline analysis, was employed to evaluate associations between urinary 6PPD and 6PPDQ levels and CRC risk, adjusting for demographic and lifestyle variables. The median concentration of 6PPDQ in CRC cases (0.94 vs 0.14 μg/g creatinine) was significantly higher than that in controls (Mann-Whitney <em>U</em> test, <em>p</em> = 0.001), while the median concentration of 6PPD showed no significant (<em>p</em> = 0.061) difference between the two groups (0.31 vs 0.38 μg/g creatinine). Higher urinary 6PPDQ concentrations were significantly associated with increased CRC risk, especially among participants with third (adjusted OR = 2.79, 95 % CI: 1.76–4.47; <em>p</em> for trend <0.001) and fourth (adjusted OR = 7.13, 95 % CI: 4.31–12.0; <em>p</em> for trend <0.001) quartiles of exposure. Additionally, the joint effects of 6PPD and 6PPDQ exposure, assessed using the BKMR model, indicated a positive association with CRC risk, suggesting a cumulative risk from co-exposure. This study provides the first epidemiological evidence linking human 6PPDQ exposure to CRC risk, highlighting its potential role in colorectal carcinogenesis.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"373 ","pages":"Article 126114"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associations of human exposure to 6PPD and 6PPDQ with colorectal cancer: A mixture analysis\",\"authors\":\"Yangbo Lv , Weili Mao , Hangbiao Jin , Jianli Qu , Dongjuan He\",\"doi\":\"10.1016/j.envpol.2025.126114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>N</em>-(1,3-dimethylbutyl)-<em>N</em>′-phenyl-<em>p</em>-phenylenediamine (6PPD) and its oxidation product, 6PPD-quinone (6PPDQ), are widely present in the environment. Toxicological studies have demonstrated that they can induce adverse health effects on the intestinal system. However, epidemiological studies examining the association between human 6PPD and 6PPDQ exposure and colorectal cancer (CRC) risk remain scarce. In this study, human urinary 6PPD and 6PPDQ concentrations were analyzed in 329 controls and 367 CRC cases from Quzhou, China. A combination of analyses, including unconditional logistic regression, Bayesian kernel machine regression (BKMR), and restricted cubic spline analysis, was employed to evaluate associations between urinary 6PPD and 6PPDQ levels and CRC risk, adjusting for demographic and lifestyle variables. The median concentration of 6PPDQ in CRC cases (0.94 vs 0.14 μg/g creatinine) was significantly higher than that in controls (Mann-Whitney <em>U</em> test, <em>p</em> = 0.001), while the median concentration of 6PPD showed no significant (<em>p</em> = 0.061) difference between the two groups (0.31 vs 0.38 μg/g creatinine). Higher urinary 6PPDQ concentrations were significantly associated with increased CRC risk, especially among participants with third (adjusted OR = 2.79, 95 % CI: 1.76–4.47; <em>p</em> for trend <0.001) and fourth (adjusted OR = 7.13, 95 % CI: 4.31–12.0; <em>p</em> for trend <0.001) quartiles of exposure. Additionally, the joint effects of 6PPD and 6PPDQ exposure, assessed using the BKMR model, indicated a positive association with CRC risk, suggesting a cumulative risk from co-exposure. This study provides the first epidemiological evidence linking human 6PPDQ exposure to CRC risk, highlighting its potential role in colorectal carcinogenesis.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"373 \",\"pages\":\"Article 126114\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125004877\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125004877","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Associations of human exposure to 6PPD and 6PPDQ with colorectal cancer: A mixture analysis
N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its oxidation product, 6PPD-quinone (6PPDQ), are widely present in the environment. Toxicological studies have demonstrated that they can induce adverse health effects on the intestinal system. However, epidemiological studies examining the association between human 6PPD and 6PPDQ exposure and colorectal cancer (CRC) risk remain scarce. In this study, human urinary 6PPD and 6PPDQ concentrations were analyzed in 329 controls and 367 CRC cases from Quzhou, China. A combination of analyses, including unconditional logistic regression, Bayesian kernel machine regression (BKMR), and restricted cubic spline analysis, was employed to evaluate associations between urinary 6PPD and 6PPDQ levels and CRC risk, adjusting for demographic and lifestyle variables. The median concentration of 6PPDQ in CRC cases (0.94 vs 0.14 μg/g creatinine) was significantly higher than that in controls (Mann-Whitney U test, p = 0.001), while the median concentration of 6PPD showed no significant (p = 0.061) difference between the two groups (0.31 vs 0.38 μg/g creatinine). Higher urinary 6PPDQ concentrations were significantly associated with increased CRC risk, especially among participants with third (adjusted OR = 2.79, 95 % CI: 1.76–4.47; p for trend <0.001) and fourth (adjusted OR = 7.13, 95 % CI: 4.31–12.0; p for trend <0.001) quartiles of exposure. Additionally, the joint effects of 6PPD and 6PPDQ exposure, assessed using the BKMR model, indicated a positive association with CRC risk, suggesting a cumulative risk from co-exposure. This study provides the first epidemiological evidence linking human 6PPDQ exposure to CRC risk, highlighting its potential role in colorectal carcinogenesis.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.