{"title":"Automorphisms of del Pezzo surfaces in characteristic 2","authors":"Igor Dolgachev, Gebhard Martin","doi":"10.2140/ant.2025.19.715","DOIUrl":null,"url":null,"abstract":"<p>We classify the automorphism groups of del Pezzo surfaces of degrees 1 and 2 over an algebraically closed field of characteristic 2. This finishes the classification of automorphism groups of del Pezzo surfaces in all characteristics. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"71 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.715","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们对特征为 2 的代数闭域上阶数为 1 和 2 的 del Pezzo 曲面的自变群进行了分类。这样就完成了所有特征中 del Pezzo 曲面的自变群的分类。
Automorphisms of del Pezzo surfaces in characteristic 2
We classify the automorphism groups of del Pezzo surfaces of degrees 1 and 2 over an algebraically closed field of characteristic 2. This finishes the classification of automorphism groups of del Pezzo surfaces in all characteristics.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.