IF 0.9 1区 数学 Q2 MATHEMATICS
Adela Gherga, Samir Siksek
{"title":"Efficient resolution of Thue–Mahler equations","authors":"Adela Gherga, Samir Siksek","doi":"10.2140/ant.2025.19.667","DOIUrl":null,"url":null,"abstract":"<p>A Thue–Mahler equation is a Diophantine equation of the form </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>F</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>Y</mi>\n<mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>a</mi>\n<mo>⋅</mo> <msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub>\n</mrow></msubsup><mo>⋯</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>v</mi></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>v</mi></mrow></msub>\n</mrow></msubsup><mo>,</mo><mspace width=\"1em\"></mspace><mi>gcd</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>Y</mi>\n<mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>1</mn>\n</math>\n</div>\n<p> where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math> is an irreducible binary form of degree at least <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn></math> with integer coefficients, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math> is a nonzero integer and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>v</mi></mrow></msub></math> are rational primes. Existing algorithms for resolving such equations require computations in the field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi>\n<mo>=</mo>\n<mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>𝜃</mi><mo>,</mo><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>′</mi><mi>′</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜃</mi></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>′</mi></mrow></msup></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>′</mi><mi>′</mi></mrow></msup></math> are distinct roots of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math>. We give a new algorithm that requires computations only in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi>\n<mo>=</mo>\n<mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo></math> making it far more suited for higher degree examples. We also introduce a lattice sieving technique reminiscent of the Mordell–Weil sieve that makes it practical to tackle Thue–Mahler equations of higher degree and with larger sets of primes than was previously possible. We give several examples including one of degree <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mn>1</mn></math>. </p><p> Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">)</mo></math> denote the largest prime divisor of an integer <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi>\n<mo>≥</mo> <mn>2</mn></math>. As an application of our algorithm we determine all pairs <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>Y</mi>\n<mo stretchy=\"false\">)</mo></math> of coprime nonnegative integers such that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>4</mn></mrow></msup>\n<mo>−</mo> <mn>2</mn><msup><mrow><mi>Y</mi> </mrow><mrow><mn>4</mn></mrow></msup><mo stretchy=\"false\">)</mo>\n<mo>≤</mo> <mn>1</mn><mn>0</mn><mn>0</mn></math>, finding that there are precisely <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn><mn>9</mn></math> such pairs. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"57 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.667","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Thue-Mahler 方程是形式为 F(X,Y)=a⋅ p1z1⋯pvzv,gcd (X,Y)= 1 的二元方程,其中 F 是一个至少有 3 个整数系数的不可还原二元形式,a 是一个非零整数,p1, ... ,pv 是有理素数。解决此类方程的现有算法需要在域 L=ℚ(𝜃,𝜃′,𝜃′′) 中进行计算,其中𝜃, 𝜃′, 𝜃′′ 是 F(X,1)= 0 的不同根。我们给出了一种新算法,它只需要在 K=ℚ(𝜃) 中进行计算,因此更适合高阶例题。我们还引入了一种格子筛技术,让人想起莫德尔-韦尔筛,它使得处理更高阶的 Thue-Mahler 方程和更大的素数集比以前更实用。我们将举出几个例子,包括一个 11 度的例子。 让 P(m) 表示整数 m≥2 的最大素数除数。作为我们算法的一个应用,我们确定了所有同素非负整数对 (X,Y),使得 P(X4- 2Y 4)≤ 100,发现这样的对恰好有 49 个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient resolution of Thue–Mahler equations

A Thue–Mahler equation is a Diophantine equation of the form

F(X,Y ) = a p1z1 pvzv ,gcd (X,Y ) = 1

where F is an irreducible binary form of degree at least 3 with integer coefficients, a is a nonzero integer and p1,,pv are rational primes. Existing algorithms for resolving such equations require computations in the field L = (𝜃,𝜃,𝜃), where 𝜃, 𝜃, 𝜃 are distinct roots of F(X,1) = 0. We give a new algorithm that requires computations only in K = (𝜃) making it far more suited for higher degree examples. We also introduce a lattice sieving technique reminiscent of the Mordell–Weil sieve that makes it practical to tackle Thue–Mahler equations of higher degree and with larger sets of primes than was previously possible. We give several examples including one of degree 11.

Let P(m) denote the largest prime divisor of an integer m 2. As an application of our algorithm we determine all pairs (X,Y ) of coprime nonnegative integers such that P(X4 2Y 4) 100, finding that there are precisely 49 such pairs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信