{"title":"Efficient resolution of Thue–Mahler equations","authors":"Adela Gherga, Samir Siksek","doi":"10.2140/ant.2025.19.667","DOIUrl":null,"url":null,"abstract":"<p>A Thue–Mahler equation is a Diophantine equation of the form </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>F</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>Y</mi>\n<mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>a</mi>\n<mo>⋅</mo> <msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub>\n</mrow></msubsup><mo>⋯</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>v</mi></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>v</mi></mrow></msub>\n</mrow></msubsup><mo>,</mo><mspace width=\"1em\"></mspace><mi>gcd</mi><mo> <!--FUNCTION APPLICATION--> </mo><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>Y</mi>\n<mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>1</mn>\n</math>\n</div>\n<p> where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math> is an irreducible binary form of degree at least <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn></math> with integer coefficients, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math> is a nonzero integer and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>v</mi></mrow></msub></math> are rational primes. Existing algorithms for resolving such equations require computations in the field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi>\n<mo>=</mo>\n<mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>𝜃</mi><mo>,</mo><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>′</mi></mrow></msup><mo>,</mo><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>′</mi><mi>′</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜃</mi></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>′</mi></mrow></msup></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>′</mi><mi>′</mi></mrow></msup></math> are distinct roots of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <mn>0</mn></math>. We give a new algorithm that requires computations only in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi>\n<mo>=</mo>\n<mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo></math> making it far more suited for higher degree examples. We also introduce a lattice sieving technique reminiscent of the Mordell–Weil sieve that makes it practical to tackle Thue–Mahler equations of higher degree and with larger sets of primes than was previously possible. We give several examples including one of degree <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mn>1</mn></math>. </p><p> Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">)</mo></math> denote the largest prime divisor of an integer <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>m</mi>\n<mo>≥</mo> <mn>2</mn></math>. As an application of our algorithm we determine all pairs <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>Y</mi>\n<mo stretchy=\"false\">)</mo></math> of coprime nonnegative integers such that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>4</mn></mrow></msup>\n<mo>−</mo> <mn>2</mn><msup><mrow><mi>Y</mi> </mrow><mrow><mn>4</mn></mrow></msup><mo stretchy=\"false\">)</mo>\n<mo>≤</mo> <mn>1</mn><mn>0</mn><mn>0</mn></math>, finding that there are precisely <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn><mn>9</mn></math> such pairs. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"57 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.667","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Thue–Mahler equation is a Diophantine equation of the form
where is an irreducible binary form of degree at least with integer coefficients, is a nonzero integer and are rational primes. Existing algorithms for resolving such equations require computations in the field , where , , are distinct roots of . We give a new algorithm that requires computations only in making it far more suited for higher degree examples. We also introduce a lattice sieving technique reminiscent of the Mordell–Weil sieve that makes it practical to tackle Thue–Mahler equations of higher degree and with larger sets of primes than was previously possible. We give several examples including one of degree .
Let denote the largest prime divisor of an integer . As an application of our algorithm we determine all pairs of coprime nonnegative integers such that , finding that there are precisely such pairs.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.