Saiyu Liu, Chaoying Yuan, Kewei Gao, Rongjian Shi, Bin Zhu, Xiaolu Pang
{"title":"锌合金在先进生物医学骨植入物中的降解特性及生物相容性","authors":"Saiyu Liu, Chaoying Yuan, Kewei Gao, Rongjian Shi, Bin Zhu, Xiaolu Pang","doi":"10.1021/acs.langmuir.4c05260","DOIUrl":null,"url":null,"abstract":"Biodegradable zinc-based alloys are regarded as a promising avenue of research for the development of bone fixation implants, offering potential solutions to clinical issues, such as stress shielding, secondary surgeries, and biocompatibility. In this study, a Zn-0.8Li-0.4Mg alloy was designed and fabricated and its potential for use as a clinical bone implant was evaluated. The alloy displays an ultimate tensile strength of 450 MPa and an elongation of 18%, thereby satisfying the requisite mechanical specifications for clinical bone implants. The results of the electrochemical and SBF in vitro corrosion tests indicate that the degradation mechanism evolves over time. The initial corrosion product layer is composed of a dense Li-containing corrosion product (LiOH/Li<sub>2</sub>CO<sub>3</sub>), which subsequently transforms into an Mg-containing corrosion product layer (MgO/Mg(OH)<sub>2</sub>) as corrosion progresses. Ultimately, due to the depletion of Li and the erosion by Cl<sup>–</sup>, it transitions to a corrosion product layer containing only the Zn and Ca/P layer. The overall degradation mechanism is jointly determined by the degree of local degradation and the corrosion resistance of the product layer. Cytotoxicity tests demonstrate that the Zn-0.8Li-0.4Mg alloy exhibits favorable biocompatibility.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"124 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation Characteristics and Biocompatibility of Zinc Alloy in Advanced Biomedical Bone Implants\",\"authors\":\"Saiyu Liu, Chaoying Yuan, Kewei Gao, Rongjian Shi, Bin Zhu, Xiaolu Pang\",\"doi\":\"10.1021/acs.langmuir.4c05260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biodegradable zinc-based alloys are regarded as a promising avenue of research for the development of bone fixation implants, offering potential solutions to clinical issues, such as stress shielding, secondary surgeries, and biocompatibility. In this study, a Zn-0.8Li-0.4Mg alloy was designed and fabricated and its potential for use as a clinical bone implant was evaluated. The alloy displays an ultimate tensile strength of 450 MPa and an elongation of 18%, thereby satisfying the requisite mechanical specifications for clinical bone implants. The results of the electrochemical and SBF in vitro corrosion tests indicate that the degradation mechanism evolves over time. The initial corrosion product layer is composed of a dense Li-containing corrosion product (LiOH/Li<sub>2</sub>CO<sub>3</sub>), which subsequently transforms into an Mg-containing corrosion product layer (MgO/Mg(OH)<sub>2</sub>) as corrosion progresses. Ultimately, due to the depletion of Li and the erosion by Cl<sup>–</sup>, it transitions to a corrosion product layer containing only the Zn and Ca/P layer. The overall degradation mechanism is jointly determined by the degree of local degradation and the corrosion resistance of the product layer. Cytotoxicity tests demonstrate that the Zn-0.8Li-0.4Mg alloy exhibits favorable biocompatibility.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c05260\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05260","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Degradation Characteristics and Biocompatibility of Zinc Alloy in Advanced Biomedical Bone Implants
Biodegradable zinc-based alloys are regarded as a promising avenue of research for the development of bone fixation implants, offering potential solutions to clinical issues, such as stress shielding, secondary surgeries, and biocompatibility. In this study, a Zn-0.8Li-0.4Mg alloy was designed and fabricated and its potential for use as a clinical bone implant was evaluated. The alloy displays an ultimate tensile strength of 450 MPa and an elongation of 18%, thereby satisfying the requisite mechanical specifications for clinical bone implants. The results of the electrochemical and SBF in vitro corrosion tests indicate that the degradation mechanism evolves over time. The initial corrosion product layer is composed of a dense Li-containing corrosion product (LiOH/Li2CO3), which subsequently transforms into an Mg-containing corrosion product layer (MgO/Mg(OH)2) as corrosion progresses. Ultimately, due to the depletion of Li and the erosion by Cl–, it transitions to a corrosion product layer containing only the Zn and Ca/P layer. The overall degradation mechanism is jointly determined by the degree of local degradation and the corrosion resistance of the product layer. Cytotoxicity tests demonstrate that the Zn-0.8Li-0.4Mg alloy exhibits favorable biocompatibility.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).