四维引力一阶对称性的新边模和角荷

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Simon Langenscheidt and Daniele Oriti
{"title":"四维引力一阶对称性的新边模和角荷","authors":"Simon Langenscheidt and Daniele Oriti","doi":"10.1088/1361-6382/adbfee","DOIUrl":null,"url":null,"abstract":"We present a set of noncommuting tetrad-shift symmetries in 4D gravity in tetrad-connection variables, which allow expressing diffeomorphisms as composite transformations. Working on the phase space level for finite regions, we pay close attention to the corner piece of the generators, discuss various possible charge brackets, relative definitions of the charges, coupling to spinors and relations to other charges. What emerges is a picture of the symmetries and edge modes of gravity that bears local resemblance to a Poincare group , but possesses structure functions. In particular, we argue that the symmetries and charges presented here are more amenable to discretisation, and sketch a strategy for this charge algebra, geared toward quantum gravity applications.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"41 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New edge modes and corner charges for first-order symmetries of 4D gravity\",\"authors\":\"Simon Langenscheidt and Daniele Oriti\",\"doi\":\"10.1088/1361-6382/adbfee\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a set of noncommuting tetrad-shift symmetries in 4D gravity in tetrad-connection variables, which allow expressing diffeomorphisms as composite transformations. Working on the phase space level for finite regions, we pay close attention to the corner piece of the generators, discuss various possible charge brackets, relative definitions of the charges, coupling to spinors and relations to other charges. What emerges is a picture of the symmetries and edge modes of gravity that bears local resemblance to a Poincare group , but possesses structure functions. In particular, we argue that the symmetries and charges presented here are more amenable to discretisation, and sketch a strategy for this charge algebra, geared toward quantum gravity applications.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/adbfee\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adbfee","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了四维重力中四元连接变量的一组非交换四元移位对称,它允许将微分同态表示为复合变换。在有限区域的相空间水平上,我们密切关注发生器的角块,讨论了各种可能的电荷括号,电荷的相对定义,与旋量的耦合以及与其他电荷的关系。出现的是引力的对称性和边缘模式的图像,它与庞加莱群有局部相似之处,但具有结构功能。特别是,我们认为这里呈现的对称性和电荷更易于离散化,并为这种电荷代数勾画了一种策略,面向量子引力应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New edge modes and corner charges for first-order symmetries of 4D gravity
We present a set of noncommuting tetrad-shift symmetries in 4D gravity in tetrad-connection variables, which allow expressing diffeomorphisms as composite transformations. Working on the phase space level for finite regions, we pay close attention to the corner piece of the generators, discuss various possible charge brackets, relative definitions of the charges, coupling to spinors and relations to other charges. What emerges is a picture of the symmetries and edge modes of gravity that bears local resemblance to a Poincare group , but possesses structure functions. In particular, we argue that the symmetries and charges presented here are more amenable to discretisation, and sketch a strategy for this charge algebra, geared toward quantum gravity applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信