Julia Semprich, Justin Filiberto, Matthew Weller, Jennifer Gorce, Nolan Clark
{"title":"Metamorphism of Venus as driver of crustal thickness and recycling","authors":"Julia Semprich, Justin Filiberto, Matthew Weller, Jennifer Gorce, Nolan Clark","doi":"10.1038/s41467-025-58324-1","DOIUrl":null,"url":null,"abstract":"<p>The composition and thickness of the venusian crust and their dependence on thermal gradients and geodynamic setting are not well constrained. Here, we use metamorphic phase transitions and the onset of melting to determine the maximum crustal thickness of basaltic plains in different tectonic settings. Crustal thickness is limited to ~40 km in a stagnant lid regime with a low thermal gradient of 5 °C/km due to density overturn and delamination. In contrast, the maximum crustal thickness in a mobile lid regime with a high thermal gradient of 25 °C/km is restricted to ~20 km due to the onset of crustal melting. The thickest the crust can be is ~65 km for a basaltic crust with a thermal gradient of 10 °C/km. Our models show that a venusian basaltic crust cannot be thicker than 20–65 km without either causing delamination and crustal recycling or melting and producing volcanic eruptions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"71 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58324-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Metamorphism of Venus as driver of crustal thickness and recycling
The composition and thickness of the venusian crust and their dependence on thermal gradients and geodynamic setting are not well constrained. Here, we use metamorphic phase transitions and the onset of melting to determine the maximum crustal thickness of basaltic plains in different tectonic settings. Crustal thickness is limited to ~40 km in a stagnant lid regime with a low thermal gradient of 5 °C/km due to density overturn and delamination. In contrast, the maximum crustal thickness in a mobile lid regime with a high thermal gradient of 25 °C/km is restricted to ~20 km due to the onset of crustal melting. The thickest the crust can be is ~65 km for a basaltic crust with a thermal gradient of 10 °C/km. Our models show that a venusian basaltic crust cannot be thicker than 20–65 km without either causing delamination and crustal recycling or melting and producing volcanic eruptions.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.