基于石墨烯的柔性神经技术用于帕金森病大鼠的高精度脑深部测绘和神经调控

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nicola Ria, Ahmed Eladly, Eduard Masvidal-Codina, Xavi Illa, Anton Guimerà, Kate Hills, Ramon Garcia-Cortadella, Fikret Taygun Duvan, Samuel M. Flaherty, Michal Prokop, Rob. C. Wykes, Kostas Kostarelos, Jose A. Garrido
{"title":"基于石墨烯的柔性神经技术用于帕金森病大鼠的高精度脑深部测绘和神经调控","authors":"Nicola Ria, Ahmed Eladly, Eduard Masvidal-Codina, Xavi Illa, Anton Guimerà, Kate Hills, Ramon Garcia-Cortadella, Fikret Taygun Duvan, Samuel M. Flaherty, Michal Prokop, Rob. C. Wykes, Kostas Kostarelos, Jose A. Garrido","doi":"10.1038/s41467-025-58156-z","DOIUrl":null,"url":null,"abstract":"<p>Deep brain stimulation (DBS) is a neuroelectronic therapy for the treatment of a broad range of neurological disorders, including Parkinson’s disease. Current DBS technologies face important limitations, such as large electrode size, invasiveness, and lack of adaptive therapy based on biomarker monitoring. In this study, we investigate the potential benefits of using nanoporous reduced graphene oxide (rGO) technology in DBS, by implanting a flexible high-density array of rGO microelectrodes (25 µm diameter) in the subthalamic nucleus (STN) of healthy and hemi-parkinsonian rats. We demonstrate that these microelectrodes record action potentials with a high signal-to-noise ratio, allowing the precise localization of the STN and the tracking of multiunit-based Parkinsonian biomarkers. The bidirectional capability to deliver high-density focal stimulation and to record high-fidelity signals unlocks the visualization of local neuromodulation of the multiunit biomarker. These findings demonstrate the potential of bidirectional high-resolution neural interfaces to investigate closed-loop DBS in preclinical models.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"3 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible graphene-based neurotechnology for high-precision deep brain mapping and neuromodulation in Parkinsonian rats\",\"authors\":\"Nicola Ria, Ahmed Eladly, Eduard Masvidal-Codina, Xavi Illa, Anton Guimerà, Kate Hills, Ramon Garcia-Cortadella, Fikret Taygun Duvan, Samuel M. Flaherty, Michal Prokop, Rob. C. Wykes, Kostas Kostarelos, Jose A. Garrido\",\"doi\":\"10.1038/s41467-025-58156-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep brain stimulation (DBS) is a neuroelectronic therapy for the treatment of a broad range of neurological disorders, including Parkinson’s disease. Current DBS technologies face important limitations, such as large electrode size, invasiveness, and lack of adaptive therapy based on biomarker monitoring. In this study, we investigate the potential benefits of using nanoporous reduced graphene oxide (rGO) technology in DBS, by implanting a flexible high-density array of rGO microelectrodes (25 µm diameter) in the subthalamic nucleus (STN) of healthy and hemi-parkinsonian rats. We demonstrate that these microelectrodes record action potentials with a high signal-to-noise ratio, allowing the precise localization of the STN and the tracking of multiunit-based Parkinsonian biomarkers. The bidirectional capability to deliver high-density focal stimulation and to record high-fidelity signals unlocks the visualization of local neuromodulation of the multiunit biomarker. These findings demonstrate the potential of bidirectional high-resolution neural interfaces to investigate closed-loop DBS in preclinical models.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58156-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58156-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脑深部电刺激(DBS)是一种用于治疗包括帕金森病在内的广泛神经系统疾病的神经电子疗法。目前的DBS技术面临着重要的局限性,如电极尺寸大、侵入性强、缺乏基于生物标志物监测的适应性治疗。在这项研究中,我们通过在健康和半帕金森大鼠的丘脑底核(STN)中植入柔性高密度rGO微电极阵列(直径25µm),研究了在DBS中使用纳米多孔还原氧化石墨烯(rGO)技术的潜在益处。我们证明这些微电极以高信噪比记录动作电位,允许STN的精确定位和多单位帕金森生物标志物的跟踪。双向传递高密度局部刺激和记录高保真信号的能力解锁了多单位生物标志物局部神经调节的可视化。这些发现证明了双向高分辨率神经接口在临床前模型中研究闭环DBS的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flexible graphene-based neurotechnology for high-precision deep brain mapping and neuromodulation in Parkinsonian rats

Flexible graphene-based neurotechnology for high-precision deep brain mapping and neuromodulation in Parkinsonian rats

Deep brain stimulation (DBS) is a neuroelectronic therapy for the treatment of a broad range of neurological disorders, including Parkinson’s disease. Current DBS technologies face important limitations, such as large electrode size, invasiveness, and lack of adaptive therapy based on biomarker monitoring. In this study, we investigate the potential benefits of using nanoporous reduced graphene oxide (rGO) technology in DBS, by implanting a flexible high-density array of rGO microelectrodes (25 µm diameter) in the subthalamic nucleus (STN) of healthy and hemi-parkinsonian rats. We demonstrate that these microelectrodes record action potentials with a high signal-to-noise ratio, allowing the precise localization of the STN and the tracking of multiunit-based Parkinsonian biomarkers. The bidirectional capability to deliver high-density focal stimulation and to record high-fidelity signals unlocks the visualization of local neuromodulation of the multiunit biomarker. These findings demonstrate the potential of bidirectional high-resolution neural interfaces to investigate closed-loop DBS in preclinical models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信