Jang Woo Lee, Jiye Han, Boseok Kang, Young Joon Hong, Sungjoo Lee, Il Jeon
{"title":"Strategic Development of Memristors for Neuromorphic Systems: Low-Power and Reconfigurable Operation","authors":"Jang Woo Lee, Jiye Han, Boseok Kang, Young Joon Hong, Sungjoo Lee, Il Jeon","doi":"10.1002/adma.202413916","DOIUrl":null,"url":null,"abstract":"The ongoing global energy crisis has heightened the demand for low-power electronic devices, driving interest in neuromorphic computing inspired by the parallel processing of human brains and energy efficiency. Reconfigurable memristors, which integrate both volatile and non-volatile behaviors within a single unit, offer a powerful solution for in-memory computing, addressing the von Neumann bottleneck that limits conventional computing architectures. These versatile devices combine the high density, low power consumption, and adaptability of memristors, positioning them as superior alternatives to traditional complementary metal-oxide-semiconductor (CMOS) technology for emulating brain-like functions. Despite their potential, studies on reconfigurable memristors remain sparse and are often limited to specific materials such as Mott insulators without fully addressing their unique reconfigurability. This review specifically focuses on reconfigurable memristors, examining their dual-mode operation, diverse physical mechanisms, structural designs, material properties, switching behaviors, and neuromorphic applications. It highlights the recent advancements in low-power-consumption solutions within memristor-based neural networks and critically evaluates the challenges in deploying reconfigurable memristors as standalone devices or within artificial neural systems. The review provides in-depth technical insights and quantitative benchmarks to guide the future development and implementation of reconfigurable memristors in low-power neuromorphic computing.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"33 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413916","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Strategic Development of Memristors for Neuromorphic Systems: Low-Power and Reconfigurable Operation
The ongoing global energy crisis has heightened the demand for low-power electronic devices, driving interest in neuromorphic computing inspired by the parallel processing of human brains and energy efficiency. Reconfigurable memristors, which integrate both volatile and non-volatile behaviors within a single unit, offer a powerful solution for in-memory computing, addressing the von Neumann bottleneck that limits conventional computing architectures. These versatile devices combine the high density, low power consumption, and adaptability of memristors, positioning them as superior alternatives to traditional complementary metal-oxide-semiconductor (CMOS) technology for emulating brain-like functions. Despite their potential, studies on reconfigurable memristors remain sparse and are often limited to specific materials such as Mott insulators without fully addressing their unique reconfigurability. This review specifically focuses on reconfigurable memristors, examining their dual-mode operation, diverse physical mechanisms, structural designs, material properties, switching behaviors, and neuromorphic applications. It highlights the recent advancements in low-power-consumption solutions within memristor-based neural networks and critically evaluates the challenges in deploying reconfigurable memristors as standalone devices or within artificial neural systems. The review provides in-depth technical insights and quantitative benchmarks to guide the future development and implementation of reconfigurable memristors in low-power neuromorphic computing.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.