高效连续电化学甲烷转化的共富集高熵氧化物:催化性能和可持续性见解

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Heewon Min, Cheolho Kim, Shu-Ya Lin, Jiyun Choi, Yunjeong Sim, Bor-Yih Yu, Jun Hyuk Moon
{"title":"高效连续电化学甲烷转化的共富集高熵氧化物:催化性能和可持续性见解","authors":"Heewon Min,&nbsp;Cheolho Kim,&nbsp;Shu-Ya Lin,&nbsp;Jiyun Choi,&nbsp;Yunjeong Sim,&nbsp;Bor-Yih Yu,&nbsp;Jun Hyuk Moon","doi":"10.1002/adma.202418767","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical conversion of methane offers a sustainable alternative to traditional thermochemical syngas pathways; however, the rational design of catalysts that ensure high productivity remains a significant challenge. In this study, a high-entropy oxide (HEO) catalyst composed of Co, Cr, Fe, Mn, and Ni is explored, with a targeted element enriched, and identify that a Co-rich HEO demonstrates high efficiency in room-temperature electrochemical methane conversion. This analysis of the projected density of states (PDOS) reveals that Co sites in the HEO catalyst possess an optimally positioned p-band center for methane activation. The Co-rich HEO catalyst achieves an ethanol production rate of 12315 µmol/g<sub>cat</sub>/hr at 1.6 V<sub>RHE</sub>, with a Faradaic efficiency of 63.5%; a flow cell electrolyzer equipped with this catalyst achieves continuous methane-to-ethanol conversion at a rate of 26533 µmol/g<sub>cat</sub>/hr over 100 h. Process modeling evaluates the economic and environmental implications, demonstrating that a commercially viable process can be realized through economies of scale while significantly reducing CO₂ emissions.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 16","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202418767","citationCount":"0","resultStr":"{\"title\":\"Co-Enriched High Entropy Oxides for Efficient Continuous Electrochemical Methane Conversion: Catalytic Performance and Sustainability Insights\",\"authors\":\"Heewon Min,&nbsp;Cheolho Kim,&nbsp;Shu-Ya Lin,&nbsp;Jiyun Choi,&nbsp;Yunjeong Sim,&nbsp;Bor-Yih Yu,&nbsp;Jun Hyuk Moon\",\"doi\":\"10.1002/adma.202418767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrochemical conversion of methane offers a sustainable alternative to traditional thermochemical syngas pathways; however, the rational design of catalysts that ensure high productivity remains a significant challenge. In this study, a high-entropy oxide (HEO) catalyst composed of Co, Cr, Fe, Mn, and Ni is explored, with a targeted element enriched, and identify that a Co-rich HEO demonstrates high efficiency in room-temperature electrochemical methane conversion. This analysis of the projected density of states (PDOS) reveals that Co sites in the HEO catalyst possess an optimally positioned p-band center for methane activation. The Co-rich HEO catalyst achieves an ethanol production rate of 12315 µmol/g<sub>cat</sub>/hr at 1.6 V<sub>RHE</sub>, with a Faradaic efficiency of 63.5%; a flow cell electrolyzer equipped with this catalyst achieves continuous methane-to-ethanol conversion at a rate of 26533 µmol/g<sub>cat</sub>/hr over 100 h. Process modeling evaluates the economic and environmental implications, demonstrating that a commercially viable process can be realized through economies of scale while significantly reducing CO₂ emissions.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 16\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202418767\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202418767\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202418767","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

甲烷的电化学转化为传统的热化学合成气途径提供了一种可持续的替代方案;然而,确保高生产率的催化剂的合理设计仍然是一个重大挑战。本研究探索了一种由Co、Cr、Fe、Mn和Ni组成的高熵氧化物(HEO)催化剂,富集了目标元素,并发现富Co的HEO在室温下电化学甲烷转化中具有较高的效率。这一预测态密度(PDOS)分析表明,在HEO催化剂中的Co位点具有一个最适合甲烷活化的p带中心。在1.6 VRHE条件下,富co HEO催化剂的乙醇产率为12315µmol/gcat/hr,法拉第效率为63.5%;配备该催化剂的液流电池电解槽在100小时内以26533µmol/gcat/hr的速率连续实现甲烷到乙醇的转化。过程建模评估了经济和环境影响,证明了通过规模经济可以实现商业上可行的过程,同时显着减少CO₂排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Co-Enriched High Entropy Oxides for Efficient Continuous Electrochemical Methane Conversion: Catalytic Performance and Sustainability Insights

Co-Enriched High Entropy Oxides for Efficient Continuous Electrochemical Methane Conversion: Catalytic Performance and Sustainability Insights

Co-Enriched High Entropy Oxides for Efficient Continuous Electrochemical Methane Conversion: Catalytic Performance and Sustainability Insights

The electrochemical conversion of methane offers a sustainable alternative to traditional thermochemical syngas pathways; however, the rational design of catalysts that ensure high productivity remains a significant challenge. In this study, a high-entropy oxide (HEO) catalyst composed of Co, Cr, Fe, Mn, and Ni is explored, with a targeted element enriched, and identify that a Co-rich HEO demonstrates high efficiency in room-temperature electrochemical methane conversion. This analysis of the projected density of states (PDOS) reveals that Co sites in the HEO catalyst possess an optimally positioned p-band center for methane activation. The Co-rich HEO catalyst achieves an ethanol production rate of 12315 µmol/gcat/hr at 1.6 VRHE, with a Faradaic efficiency of 63.5%; a flow cell electrolyzer equipped with this catalyst achieves continuous methane-to-ethanol conversion at a rate of 26533 µmol/gcat/hr over 100 h. Process modeling evaluates the economic and environmental implications, demonstrating that a commercially viable process can be realized through economies of scale while significantly reducing CO₂ emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信