Freddyson J. Martínez-Rivera, Leanne M. Holt, Angélica Minier-Toribio, Molly Estill, Szu-Ying Yeh, Solange Tofani, Rita Futamura, Caleb J. Browne, Philipp Mews, Li Shen, Eric J. Nestler
{"title":"雄性大鼠伏隔核内可卡因戒断与消失的转录特征","authors":"Freddyson J. Martínez-Rivera, Leanne M. Holt, Angélica Minier-Toribio, Molly Estill, Szu-Ying Yeh, Solange Tofani, Rita Futamura, Caleb J. Browne, Philipp Mews, Li Shen, Eric J. Nestler","doi":"10.1038/s41467-025-58151-4","DOIUrl":null,"url":null,"abstract":"<p>Neurobiological alterations seen in addiction amplify during abstinence and compromise relapse prevention. Cocaine use disorder (CUD) exemplifies this phenomenon in which reward regions such as nucleus accumbens (NAc) undergo withdrawal-associated modifications. While genome-wide transcriptional changes in NAc are linked to specific addiction phases, these have not been examined in a context- and NAc-subregion-specific manner during withdrawal vs. extinction. We used cocaine self-administration in male rats combined with RNA-sequencing of NAc-core and -shell to transcriptionally profile withdrawal in the home-cage, in the previous drug context, or after extinction. As expected, home-cage withdrawal maintained seeking, whereas extinction reduced it. By contrast, withdrawal involving the drug context only increased seeking. Bioinformatic analyses revealed specific gene expression patterns and networks associated with these states. Comparing NAc datasets of CUD patients highlighted conserved transcriptomic signatures with rats experiencing withdrawal in the drug context. Together, this work reveals fundamental mechanisms that can be targeted to attenuate relapse.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"21 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptional characterization of cocaine withdrawal versus extinction within nucleus accumbens in male rats\",\"authors\":\"Freddyson J. Martínez-Rivera, Leanne M. Holt, Angélica Minier-Toribio, Molly Estill, Szu-Ying Yeh, Solange Tofani, Rita Futamura, Caleb J. Browne, Philipp Mews, Li Shen, Eric J. Nestler\",\"doi\":\"10.1038/s41467-025-58151-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neurobiological alterations seen in addiction amplify during abstinence and compromise relapse prevention. Cocaine use disorder (CUD) exemplifies this phenomenon in which reward regions such as nucleus accumbens (NAc) undergo withdrawal-associated modifications. While genome-wide transcriptional changes in NAc are linked to specific addiction phases, these have not been examined in a context- and NAc-subregion-specific manner during withdrawal vs. extinction. We used cocaine self-administration in male rats combined with RNA-sequencing of NAc-core and -shell to transcriptionally profile withdrawal in the home-cage, in the previous drug context, or after extinction. As expected, home-cage withdrawal maintained seeking, whereas extinction reduced it. By contrast, withdrawal involving the drug context only increased seeking. Bioinformatic analyses revealed specific gene expression patterns and networks associated with these states. Comparing NAc datasets of CUD patients highlighted conserved transcriptomic signatures with rats experiencing withdrawal in the drug context. Together, this work reveals fundamental mechanisms that can be targeted to attenuate relapse.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58151-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58151-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Transcriptional characterization of cocaine withdrawal versus extinction within nucleus accumbens in male rats
Neurobiological alterations seen in addiction amplify during abstinence and compromise relapse prevention. Cocaine use disorder (CUD) exemplifies this phenomenon in which reward regions such as nucleus accumbens (NAc) undergo withdrawal-associated modifications. While genome-wide transcriptional changes in NAc are linked to specific addiction phases, these have not been examined in a context- and NAc-subregion-specific manner during withdrawal vs. extinction. We used cocaine self-administration in male rats combined with RNA-sequencing of NAc-core and -shell to transcriptionally profile withdrawal in the home-cage, in the previous drug context, or after extinction. As expected, home-cage withdrawal maintained seeking, whereas extinction reduced it. By contrast, withdrawal involving the drug context only increased seeking. Bioinformatic analyses revealed specific gene expression patterns and networks associated with these states. Comparing NAc datasets of CUD patients highlighted conserved transcriptomic signatures with rats experiencing withdrawal in the drug context. Together, this work reveals fundamental mechanisms that can be targeted to attenuate relapse.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.