HUNHODRL:在云环境中使用混合优化深度强化模型和HunterPlus调度器实现节能资源分配。

IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Senthilkumar Chellamuthu, Kalaivani Ramanathan, Rajesh Arivanandhan
{"title":"HUNHODRL:在云环境中使用混合优化深度强化模型和HunterPlus调度器实现节能资源分配。","authors":"Senthilkumar Chellamuthu, Kalaivani Ramanathan, Rajesh Arivanandhan","doi":"10.1080/0954898X.2025.2480294","DOIUrl":null,"url":null,"abstract":"<p><p>Resource optimization and workload balancing in cloud computing environments necessitate efficient management of resources to minimize energy wastage and SLA (Service Level Agreement) violations. The existing scheduling techniques often face challenges with dynamic resource allocations and lead to inefficient job completion rates and container utilizations. Hence, this framework has been proposed to establish HUNHODRL, a newly-minted DRL-based framework that aims to improve container orchestration and workload allocation. The evaluation of this framework was done against HUNDRL, Bi-GGCN, and CNN methods comparatively under two sets of workloads with datasets on CPU, Memory, and Disk I/O utilization metrics. The model optimizes scheduling choices in HUNHODRL through a combination of destination host capacity vector and active job utilization matrix. The experimental results show that HUNHODRL outperforms existing models in container creation rate, job completion rate, SLA violation reduction, and energy efficiency. It facilitates increased container creation efficiency without increasing the energy costs of VM deployments. This method dynamically adapts itself and modifies the scheduling strategy to optimize performance amid varying workloads, thus establishing its scalability and robustness. A comparative analysis has demonstrated higher job completion rates against CNN, Bi-GGCNN, and HUNDRL, establishing the potential of DRL-based resource allocation. The significant gain in cloud resource utilization and energy-efficient task execution makes HUNHODRL and its suitable solution for next-generation cloud computing infrastructure.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-26"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HUNHODRL: Energy efficient resource distribution in a cloud environment using hybrid optimized deep reinforcement model with HunterPlus scheduler.\",\"authors\":\"Senthilkumar Chellamuthu, Kalaivani Ramanathan, Rajesh Arivanandhan\",\"doi\":\"10.1080/0954898X.2025.2480294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resource optimization and workload balancing in cloud computing environments necessitate efficient management of resources to minimize energy wastage and SLA (Service Level Agreement) violations. The existing scheduling techniques often face challenges with dynamic resource allocations and lead to inefficient job completion rates and container utilizations. Hence, this framework has been proposed to establish HUNHODRL, a newly-minted DRL-based framework that aims to improve container orchestration and workload allocation. The evaluation of this framework was done against HUNDRL, Bi-GGCN, and CNN methods comparatively under two sets of workloads with datasets on CPU, Memory, and Disk I/O utilization metrics. The model optimizes scheduling choices in HUNHODRL through a combination of destination host capacity vector and active job utilization matrix. The experimental results show that HUNHODRL outperforms existing models in container creation rate, job completion rate, SLA violation reduction, and energy efficiency. It facilitates increased container creation efficiency without increasing the energy costs of VM deployments. This method dynamically adapts itself and modifies the scheduling strategy to optimize performance amid varying workloads, thus establishing its scalability and robustness. A comparative analysis has demonstrated higher job completion rates against CNN, Bi-GGCNN, and HUNDRL, establishing the potential of DRL-based resource allocation. The significant gain in cloud resource utilization and energy-efficient task execution makes HUNHODRL and its suitable solution for next-generation cloud computing infrastructure.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-26\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2025.2480294\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2480294","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在透过克服学生签名即时验证的问题,提升教育的安全性与合法性。这个问题是由于学校里日益严重的身份盗窃和学术欺诈问题而提出的,这些问题损害了考试和其他学术评估的有效性。为了克服这些问题,本文提出了一种基于深度学习的签名验证方法,该方法采用了尖端的卷积神经网络(cnn)。该方法利用经过训练和调整的VGG19架构来处理学生签名的独特特征。首先,在提取关键签名特征后,对图像进行预处理。这些特征在VGG19网络中传递后,签名的真实性被划分为不可靠节点和恶意节点。该方法具有批量处理和个体处理的能力,为各种教育环境提供了灵活性和可扩展性。实验结果表明,该模型的准确率、精密度和召回率均优于现有的方法。该方法通过说明对多种噪声和失真的恢复能力,确保了在各种情况下的可靠性能。所提出的深度学习模型结果为解决学生签名验证问题提供了一种方法,增强了学术机构的安全性和合法性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HUNHODRL: Energy efficient resource distribution in a cloud environment using hybrid optimized deep reinforcement model with HunterPlus scheduler.

Resource optimization and workload balancing in cloud computing environments necessitate efficient management of resources to minimize energy wastage and SLA (Service Level Agreement) violations. The existing scheduling techniques often face challenges with dynamic resource allocations and lead to inefficient job completion rates and container utilizations. Hence, this framework has been proposed to establish HUNHODRL, a newly-minted DRL-based framework that aims to improve container orchestration and workload allocation. The evaluation of this framework was done against HUNDRL, Bi-GGCN, and CNN methods comparatively under two sets of workloads with datasets on CPU, Memory, and Disk I/O utilization metrics. The model optimizes scheduling choices in HUNHODRL through a combination of destination host capacity vector and active job utilization matrix. The experimental results show that HUNHODRL outperforms existing models in container creation rate, job completion rate, SLA violation reduction, and energy efficiency. It facilitates increased container creation efficiency without increasing the energy costs of VM deployments. This method dynamically adapts itself and modifies the scheduling strategy to optimize performance amid varying workloads, thus establishing its scalability and robustness. A comparative analysis has demonstrated higher job completion rates against CNN, Bi-GGCNN, and HUNDRL, establishing the potential of DRL-based resource allocation. The significant gain in cloud resource utilization and energy-efficient task execution makes HUNHODRL and its suitable solution for next-generation cloud computing infrastructure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信