Michele De Rosa, Ottavia Giampaoli, Adriano Patriarca, Federico Marini, Antonio Pietroiusti, Lorenzo Ippoliti, Agostino Paolino, Andrea Militello, Anna Rita Fetoni, Renata Sisto, Giovanna Tranfo, Mariangela Spagnoli, Fabio Sciubba
{"title":"塑料制造工人尿液代谢组学:一项初步研究。","authors":"Michele De Rosa, Ottavia Giampaoli, Adriano Patriarca, Federico Marini, Antonio Pietroiusti, Lorenzo Ippoliti, Agostino Paolino, Andrea Militello, Anna Rita Fetoni, Renata Sisto, Giovanna Tranfo, Mariangela Spagnoli, Fabio Sciubba","doi":"10.3390/jox15020039","DOIUrl":null,"url":null,"abstract":"<p><p>The plastic manufacturing industry has a crucial role in the global economy with a significant impact in a wide range of fields. The chemical risk to which workers are potentially exposed is difficult to characterize and strictly related to both the products and processes adopted. Among the chemicals used, we can cite styrene, phenol, butadiene and phthalates, but nano- and microplastic particles can also be released in the work environment. In this pilot study, we present for the first time an NMR-based metabolomic approach for assessing urinary profiles of workers employed in a plastic manufacturing company. Urine samples from twelve workers and thirteen healthy volunteers were collected and analyzed by NMR spectroscopy. Forty-six urinary metabolites belonging to different chemical classes were univocally identified and quantified. The dataset so obtained was then subjected to multivariate statistical analysis to characterize each profile and highlight any differences. An alteration in some metabolites involved in several pathways, such as amino acid metabolism and NAD metabolism, was found, and a strong impact on gut microflora was also speculated. Ultimately, our work has the objective of adding a tile to the knowledge of biological effects possibly related to occupational exposure even if it is below the threshold limit values.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932285/pdf/","citationCount":"0","resultStr":"{\"title\":\"Urinary Metabolomics of Plastic Manufacturing Workers: A Pilot Study.\",\"authors\":\"Michele De Rosa, Ottavia Giampaoli, Adriano Patriarca, Federico Marini, Antonio Pietroiusti, Lorenzo Ippoliti, Agostino Paolino, Andrea Militello, Anna Rita Fetoni, Renata Sisto, Giovanna Tranfo, Mariangela Spagnoli, Fabio Sciubba\",\"doi\":\"10.3390/jox15020039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The plastic manufacturing industry has a crucial role in the global economy with a significant impact in a wide range of fields. The chemical risk to which workers are potentially exposed is difficult to characterize and strictly related to both the products and processes adopted. Among the chemicals used, we can cite styrene, phenol, butadiene and phthalates, but nano- and microplastic particles can also be released in the work environment. In this pilot study, we present for the first time an NMR-based metabolomic approach for assessing urinary profiles of workers employed in a plastic manufacturing company. Urine samples from twelve workers and thirteen healthy volunteers were collected and analyzed by NMR spectroscopy. Forty-six urinary metabolites belonging to different chemical classes were univocally identified and quantified. The dataset so obtained was then subjected to multivariate statistical analysis to characterize each profile and highlight any differences. An alteration in some metabolites involved in several pathways, such as amino acid metabolism and NAD metabolism, was found, and a strong impact on gut microflora was also speculated. Ultimately, our work has the objective of adding a tile to the knowledge of biological effects possibly related to occupational exposure even if it is below the threshold limit values.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932285/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15020039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15020039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Urinary Metabolomics of Plastic Manufacturing Workers: A Pilot Study.
The plastic manufacturing industry has a crucial role in the global economy with a significant impact in a wide range of fields. The chemical risk to which workers are potentially exposed is difficult to characterize and strictly related to both the products and processes adopted. Among the chemicals used, we can cite styrene, phenol, butadiene and phthalates, but nano- and microplastic particles can also be released in the work environment. In this pilot study, we present for the first time an NMR-based metabolomic approach for assessing urinary profiles of workers employed in a plastic manufacturing company. Urine samples from twelve workers and thirteen healthy volunteers were collected and analyzed by NMR spectroscopy. Forty-six urinary metabolites belonging to different chemical classes were univocally identified and quantified. The dataset so obtained was then subjected to multivariate statistical analysis to characterize each profile and highlight any differences. An alteration in some metabolites involved in several pathways, such as amino acid metabolism and NAD metabolism, was found, and a strong impact on gut microflora was also speculated. Ultimately, our work has the objective of adding a tile to the knowledge of biological effects possibly related to occupational exposure even if it is below the threshold limit values.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.