{"title":"宏基因组学研究了环境、中温和热条件下全规模厌氧消化植物的不同抗性性状和风险。","authors":"Xinyu Zhu, Irini Angelidaki, Tong Zhang, Feng Ju","doi":"10.1021/acsenvironau.4c00071","DOIUrl":null,"url":null,"abstract":"<p><p>Anaerobic digestion (AD) systems are vital for converting organic waste to green bioenergy but also serve as a non-negligible environmental reservoir for antibiotic-resistance genes (ARGs) and resistant bacteria of environmental and human health concerns. This study profiles the antibiotic resistome of 90 full-scale biogas reactors and reveals that AD microbiomes harbor at least 30 types and 1257 subtypes of ARGs, of which 16% are located on plasmids showing potential mobility. The total abundance of AD-ARGs ranges widely from 0.13 to 7.81 copies per cell and is distributed into 42-739 subtypes, significantly influenced (<i>P</i> < 0.05) by operational conditions like digestion temperature and substrate types. Compared with the ambient and mesophilic digesters, the thermophilic digesters harbor a significantly lower abundance and diversity as well as greatly reduced mobility and host pathogenicity levels (all <i>P</i> < 0.05) of ARGs, revealing that a higher digestion temperature mitigates the overall resistome risks. The comprehensive analysis of basic traits and key traits of the AD resistome is demonstrated to provide crucial quantitative and qualitative insights into the diversity, distribution pattern, and health risks of ARGs in full-scale AD systems. The revealed knowledge offers new guidance for improving environmental resistome management and developing oriented mitigation strategies to minimize the unwanted spread of clinically important antimicrobial resistance from AD systems.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 2","pages":"183-196"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926754/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metagenomics Disentangles Differential Resistome Traits and Risks in Full-Scale Anaerobic Digestion Plants under Ambient, Mesophilic, and Thermophilic Conditions.\",\"authors\":\"Xinyu Zhu, Irini Angelidaki, Tong Zhang, Feng Ju\",\"doi\":\"10.1021/acsenvironau.4c00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anaerobic digestion (AD) systems are vital for converting organic waste to green bioenergy but also serve as a non-negligible environmental reservoir for antibiotic-resistance genes (ARGs) and resistant bacteria of environmental and human health concerns. This study profiles the antibiotic resistome of 90 full-scale biogas reactors and reveals that AD microbiomes harbor at least 30 types and 1257 subtypes of ARGs, of which 16% are located on plasmids showing potential mobility. The total abundance of AD-ARGs ranges widely from 0.13 to 7.81 copies per cell and is distributed into 42-739 subtypes, significantly influenced (<i>P</i> < 0.05) by operational conditions like digestion temperature and substrate types. Compared with the ambient and mesophilic digesters, the thermophilic digesters harbor a significantly lower abundance and diversity as well as greatly reduced mobility and host pathogenicity levels (all <i>P</i> < 0.05) of ARGs, revealing that a higher digestion temperature mitigates the overall resistome risks. The comprehensive analysis of basic traits and key traits of the AD resistome is demonstrated to provide crucial quantitative and qualitative insights into the diversity, distribution pattern, and health risks of ARGs in full-scale AD systems. The revealed knowledge offers new guidance for improving environmental resistome management and developing oriented mitigation strategies to minimize the unwanted spread of clinically important antimicrobial resistance from AD systems.</p>\",\"PeriodicalId\":29801,\"journal\":{\"name\":\"ACS Environmental Au\",\"volume\":\"5 2\",\"pages\":\"183-196\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Environmental Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenvironau.4c00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/19 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsenvironau.4c00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Metagenomics Disentangles Differential Resistome Traits and Risks in Full-Scale Anaerobic Digestion Plants under Ambient, Mesophilic, and Thermophilic Conditions.
Anaerobic digestion (AD) systems are vital for converting organic waste to green bioenergy but also serve as a non-negligible environmental reservoir for antibiotic-resistance genes (ARGs) and resistant bacteria of environmental and human health concerns. This study profiles the antibiotic resistome of 90 full-scale biogas reactors and reveals that AD microbiomes harbor at least 30 types and 1257 subtypes of ARGs, of which 16% are located on plasmids showing potential mobility. The total abundance of AD-ARGs ranges widely from 0.13 to 7.81 copies per cell and is distributed into 42-739 subtypes, significantly influenced (P < 0.05) by operational conditions like digestion temperature and substrate types. Compared with the ambient and mesophilic digesters, the thermophilic digesters harbor a significantly lower abundance and diversity as well as greatly reduced mobility and host pathogenicity levels (all P < 0.05) of ARGs, revealing that a higher digestion temperature mitigates the overall resistome risks. The comprehensive analysis of basic traits and key traits of the AD resistome is demonstrated to provide crucial quantitative and qualitative insights into the diversity, distribution pattern, and health risks of ARGs in full-scale AD systems. The revealed knowledge offers new guidance for improving environmental resistome management and developing oriented mitigation strategies to minimize the unwanted spread of clinically important antimicrobial resistance from AD systems.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management