Chloe Barsa, Julian Perrin, Claudine David, Arnaud Mourier, Manuel Rojo
{"title":"测定与2a型腓骨肌萎缩症相关的MFN2变异融合能力的细胞试验","authors":"Chloe Barsa, Julian Perrin, Claudine David, Arnaud Mourier, Manuel Rojo","doi":"10.1038/s41598-025-93702-1","DOIUrl":null,"url":null,"abstract":"<p><p>Charcot-Marie-Tooth Disease (CMT) is an inherited peripheral neuropathy with two main forms: demyelinating CMT1 and axonal CMT2. The most frequent subtype of CMT2 (CMT2A) is linked to mutations of MFN2, encoding a ubiquitously expressed GTP-binding protein anchored to the mitochondrial outer membrane and essential for mitochondrial fusion. The use of Next-Generation Sequencing has led to the identification of increasing numbers of MFN2 variants, yet many of them remain of unknown significance, depriving patients of a clear diagnosis. In this work, we establish a cellular assay allowing to assess the impact of 12 known MFN2 variants linked to CMT2A on mitochondrial fusion. The functional analysis revealed that out of the 12 selected MFN2 mutations, only six exhibited reduced fusion activity. The classification of MFN2 variants according to the results of the functional assay revealed a correlation between the fusion capacity, the age at onset of CMT2A and computational variant effect predictions relying on the analysis of the protein sequence. The functional assay and the results obtained will assist and improve the classification of novel MFN2 variants identified in patients.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9971"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929822/pdf/","citationCount":"0","resultStr":"{\"title\":\"A cellular assay to determine the fusion capacity of MFN2 variants linked to Charcot-Marie-Tooth disease of type 2 A.\",\"authors\":\"Chloe Barsa, Julian Perrin, Claudine David, Arnaud Mourier, Manuel Rojo\",\"doi\":\"10.1038/s41598-025-93702-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Charcot-Marie-Tooth Disease (CMT) is an inherited peripheral neuropathy with two main forms: demyelinating CMT1 and axonal CMT2. The most frequent subtype of CMT2 (CMT2A) is linked to mutations of MFN2, encoding a ubiquitously expressed GTP-binding protein anchored to the mitochondrial outer membrane and essential for mitochondrial fusion. The use of Next-Generation Sequencing has led to the identification of increasing numbers of MFN2 variants, yet many of them remain of unknown significance, depriving patients of a clear diagnosis. In this work, we establish a cellular assay allowing to assess the impact of 12 known MFN2 variants linked to CMT2A on mitochondrial fusion. The functional analysis revealed that out of the 12 selected MFN2 mutations, only six exhibited reduced fusion activity. The classification of MFN2 variants according to the results of the functional assay revealed a correlation between the fusion capacity, the age at onset of CMT2A and computational variant effect predictions relying on the analysis of the protein sequence. The functional assay and the results obtained will assist and improve the classification of novel MFN2 variants identified in patients.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9971\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929822/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-93702-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93702-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A cellular assay to determine the fusion capacity of MFN2 variants linked to Charcot-Marie-Tooth disease of type 2 A.
Charcot-Marie-Tooth Disease (CMT) is an inherited peripheral neuropathy with two main forms: demyelinating CMT1 and axonal CMT2. The most frequent subtype of CMT2 (CMT2A) is linked to mutations of MFN2, encoding a ubiquitously expressed GTP-binding protein anchored to the mitochondrial outer membrane and essential for mitochondrial fusion. The use of Next-Generation Sequencing has led to the identification of increasing numbers of MFN2 variants, yet many of them remain of unknown significance, depriving patients of a clear diagnosis. In this work, we establish a cellular assay allowing to assess the impact of 12 known MFN2 variants linked to CMT2A on mitochondrial fusion. The functional analysis revealed that out of the 12 selected MFN2 mutations, only six exhibited reduced fusion activity. The classification of MFN2 variants according to the results of the functional assay revealed a correlation between the fusion capacity, the age at onset of CMT2A and computational variant effect predictions relying on the analysis of the protein sequence. The functional assay and the results obtained will assist and improve the classification of novel MFN2 variants identified in patients.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.