Yue-Yan Li, Fan-Liang Meng, Si-Yuan Zhou, Jia-Min Du, Wen-Jing Li, Qi-Yun Liu, Lei Wu, Meng-Meng Zhao, Yi Jin, Qun-Ye Zhang, Ying Li, Guo-Hai Su
{"title":"CDX1通过调节LAPTM4B减轻自噬通量损伤,改善尼古丁诱导的心脏成纤维细胞活化和心肌细胞肥大。","authors":"Yue-Yan Li, Fan-Liang Meng, Si-Yuan Zhou, Jia-Min Du, Wen-Jing Li, Qi-Yun Liu, Lei Wu, Meng-Meng Zhao, Yi Jin, Qun-Ye Zhang, Ying Li, Guo-Hai Su","doi":"10.1038/s41598-025-94160-5","DOIUrl":null,"url":null,"abstract":"<p><p>Nicotine-induced impairment of autophagic flux promotes the onset of myocardial remodelling, thereby exacerbating heart failure. In this study, we investigated the role and molecular mechanisms of the transcription factor CDX1 in cardiac fibroblasts (CFs) activation and cardiomyocyte hypertrophy induced by nicotine. We found that CDX1 expression was increased in response to nicotine. However, a decrease in CDX1 further exacerbated the nicotine-induced blockade of autophagic flux, thereby aggravating CFs activation and cardiomyocyte hypertrophy. This effect was attributed to the suppression of the autophagic regulator LAPTM4B transcription by CDX1 and the subsequent activation of the mTOR pathway. In contrast, CDX1 overexpression promoted LAPTM4B expression, resulting in the opposite effect. In conclusion, our study demonstrated that CDX1/LAPTM4B axis could alleviate nicotine-induced autophagy flux impairment by inhibiting mTORC1 pathway activation, thereby alleviating CFs activation and cardiomyocyte hypertrophy, and exerting cardioprotective functions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9985"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929911/pdf/","citationCount":"0","resultStr":"{\"title\":\"CDX1 improves nicotine induced cardiac fibroblasts activation and cardiomyocyte hypertrophy by alleviating autophagic flux impairment through modulation of LAPTM4B.\",\"authors\":\"Yue-Yan Li, Fan-Liang Meng, Si-Yuan Zhou, Jia-Min Du, Wen-Jing Li, Qi-Yun Liu, Lei Wu, Meng-Meng Zhao, Yi Jin, Qun-Ye Zhang, Ying Li, Guo-Hai Su\",\"doi\":\"10.1038/s41598-025-94160-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nicotine-induced impairment of autophagic flux promotes the onset of myocardial remodelling, thereby exacerbating heart failure. In this study, we investigated the role and molecular mechanisms of the transcription factor CDX1 in cardiac fibroblasts (CFs) activation and cardiomyocyte hypertrophy induced by nicotine. We found that CDX1 expression was increased in response to nicotine. However, a decrease in CDX1 further exacerbated the nicotine-induced blockade of autophagic flux, thereby aggravating CFs activation and cardiomyocyte hypertrophy. This effect was attributed to the suppression of the autophagic regulator LAPTM4B transcription by CDX1 and the subsequent activation of the mTOR pathway. In contrast, CDX1 overexpression promoted LAPTM4B expression, resulting in the opposite effect. In conclusion, our study demonstrated that CDX1/LAPTM4B axis could alleviate nicotine-induced autophagy flux impairment by inhibiting mTORC1 pathway activation, thereby alleviating CFs activation and cardiomyocyte hypertrophy, and exerting cardioprotective functions.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9985\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929911/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-94160-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94160-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
CDX1 improves nicotine induced cardiac fibroblasts activation and cardiomyocyte hypertrophy by alleviating autophagic flux impairment through modulation of LAPTM4B.
Nicotine-induced impairment of autophagic flux promotes the onset of myocardial remodelling, thereby exacerbating heart failure. In this study, we investigated the role and molecular mechanisms of the transcription factor CDX1 in cardiac fibroblasts (CFs) activation and cardiomyocyte hypertrophy induced by nicotine. We found that CDX1 expression was increased in response to nicotine. However, a decrease in CDX1 further exacerbated the nicotine-induced blockade of autophagic flux, thereby aggravating CFs activation and cardiomyocyte hypertrophy. This effect was attributed to the suppression of the autophagic regulator LAPTM4B transcription by CDX1 and the subsequent activation of the mTOR pathway. In contrast, CDX1 overexpression promoted LAPTM4B expression, resulting in the opposite effect. In conclusion, our study demonstrated that CDX1/LAPTM4B axis could alleviate nicotine-induced autophagy flux impairment by inhibiting mTORC1 pathway activation, thereby alleviating CFs activation and cardiomyocyte hypertrophy, and exerting cardioprotective functions.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.