Gaitan Gehin, Nicolas Carraro, Jan Roelof van der Meer, Jasquelin Peña
{"title":"两种锰氧化酶的种群水平控制扩大了细菌锰生物矿化的生态位。","authors":"Gaitan Gehin, Nicolas Carraro, Jan Roelof van der Meer, Jasquelin Peña","doi":"10.1038/s41522-025-00670-5","DOIUrl":null,"url":null,"abstract":"<p><p>The enzymatic oxidation of aqueous divalent manganese (Mn) is a widespread microbial trait that produces reactive Mn(III, IV) oxide minerals. These biominerals drive carbon, nutrient, and trace metal cycles, thus playing important environmental and ecological roles. However, the regulatory mechanisms and physiological functions of Mn biomineralization are unknown. This challenge arises from the common occurrence of multiple Mn oxidases within the same organism and the use of Mn oxides as indicators of combined gene activity. Through the detection of gene activation in individual cells, we discover that expression of mnxG and mcoA, two Mn oxidase-encoding genes in Pseudomonas putida GB-1, is confined to subsets of cells within the population, with each gene showing distinct spatiotemporal patterns that reflect local microenvironments. These coordinated intra-population dynamics control Mn biomineralization and illuminate the strategies used by microbial communities to dictate the extent, location, and timing of biogeochemical transformations.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"50"},"PeriodicalIF":7.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930936/pdf/","citationCount":"0","resultStr":"{\"title\":\"Population-level control of two manganese oxidases expands the niche for bacterial manganese biomineralization.\",\"authors\":\"Gaitan Gehin, Nicolas Carraro, Jan Roelof van der Meer, Jasquelin Peña\",\"doi\":\"10.1038/s41522-025-00670-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The enzymatic oxidation of aqueous divalent manganese (Mn) is a widespread microbial trait that produces reactive Mn(III, IV) oxide minerals. These biominerals drive carbon, nutrient, and trace metal cycles, thus playing important environmental and ecological roles. However, the regulatory mechanisms and physiological functions of Mn biomineralization are unknown. This challenge arises from the common occurrence of multiple Mn oxidases within the same organism and the use of Mn oxides as indicators of combined gene activity. Through the detection of gene activation in individual cells, we discover that expression of mnxG and mcoA, two Mn oxidase-encoding genes in Pseudomonas putida GB-1, is confined to subsets of cells within the population, with each gene showing distinct spatiotemporal patterns that reflect local microenvironments. These coordinated intra-population dynamics control Mn biomineralization and illuminate the strategies used by microbial communities to dictate the extent, location, and timing of biogeochemical transformations.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"50\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00670-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00670-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Population-level control of two manganese oxidases expands the niche for bacterial manganese biomineralization.
The enzymatic oxidation of aqueous divalent manganese (Mn) is a widespread microbial trait that produces reactive Mn(III, IV) oxide minerals. These biominerals drive carbon, nutrient, and trace metal cycles, thus playing important environmental and ecological roles. However, the regulatory mechanisms and physiological functions of Mn biomineralization are unknown. This challenge arises from the common occurrence of multiple Mn oxidases within the same organism and the use of Mn oxides as indicators of combined gene activity. Through the detection of gene activation in individual cells, we discover that expression of mnxG and mcoA, two Mn oxidase-encoding genes in Pseudomonas putida GB-1, is confined to subsets of cells within the population, with each gene showing distinct spatiotemporal patterns that reflect local microenvironments. These coordinated intra-population dynamics control Mn biomineralization and illuminate the strategies used by microbial communities to dictate the extent, location, and timing of biogeochemical transformations.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.