两种锰氧化酶的种群水平控制扩大了细菌锰生物矿化的生态位。

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Gaitan Gehin, Nicolas Carraro, Jan Roelof van der Meer, Jasquelin Peña
{"title":"两种锰氧化酶的种群水平控制扩大了细菌锰生物矿化的生态位。","authors":"Gaitan Gehin, Nicolas Carraro, Jan Roelof van der Meer, Jasquelin Peña","doi":"10.1038/s41522-025-00670-5","DOIUrl":null,"url":null,"abstract":"<p><p>The enzymatic oxidation of aqueous divalent manganese (Mn) is a widespread microbial trait that produces reactive Mn(III, IV) oxide minerals. These biominerals drive carbon, nutrient, and trace metal cycles, thus playing important environmental and ecological roles. However, the regulatory mechanisms and physiological functions of Mn biomineralization are unknown. This challenge arises from the common occurrence of multiple Mn oxidases within the same organism and the use of Mn oxides as indicators of combined gene activity. Through the detection of gene activation in individual cells, we discover that expression of mnxG and mcoA, two Mn oxidase-encoding genes in Pseudomonas putida GB-1, is confined to subsets of cells within the population, with each gene showing distinct spatiotemporal patterns that reflect local microenvironments. These coordinated intra-population dynamics control Mn biomineralization and illuminate the strategies used by microbial communities to dictate the extent, location, and timing of biogeochemical transformations.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"50"},"PeriodicalIF":7.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930936/pdf/","citationCount":"0","resultStr":"{\"title\":\"Population-level control of two manganese oxidases expands the niche for bacterial manganese biomineralization.\",\"authors\":\"Gaitan Gehin, Nicolas Carraro, Jan Roelof van der Meer, Jasquelin Peña\",\"doi\":\"10.1038/s41522-025-00670-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The enzymatic oxidation of aqueous divalent manganese (Mn) is a widespread microbial trait that produces reactive Mn(III, IV) oxide minerals. These biominerals drive carbon, nutrient, and trace metal cycles, thus playing important environmental and ecological roles. However, the regulatory mechanisms and physiological functions of Mn biomineralization are unknown. This challenge arises from the common occurrence of multiple Mn oxidases within the same organism and the use of Mn oxides as indicators of combined gene activity. Through the detection of gene activation in individual cells, we discover that expression of mnxG and mcoA, two Mn oxidase-encoding genes in Pseudomonas putida GB-1, is confined to subsets of cells within the population, with each gene showing distinct spatiotemporal patterns that reflect local microenvironments. These coordinated intra-population dynamics control Mn biomineralization and illuminate the strategies used by microbial communities to dictate the extent, location, and timing of biogeochemical transformations.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"50\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00670-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00670-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

酶促氧化水二价锰(Mn)是一种广泛的微生物特性,可产生活性Mn(III, IV)氧化物矿物。这些生物矿物质驱动碳、养分和微量金属循环,具有重要的环境和生态作用。然而,锰生物矿化的调控机制和生理功能尚不清楚。这一挑战源于同一生物体中常见的多种锰氧化酶以及锰氧化物作为联合基因活性指标的使用。通过检测单个细胞中的基因激活,我们发现恶臭假单胞菌GB-1中两个Mn氧化酶编码基因mnxG和mcoA的表达仅限于群体内的细胞亚群,每个基因表现出不同的时空模式,反映了当地的微环境。这些协调的种群内动态控制着锰生物矿化,并阐明了微生物群落用来决定生物地球化学转化的程度、位置和时间的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Population-level control of two manganese oxidases expands the niche for bacterial manganese biomineralization.

The enzymatic oxidation of aqueous divalent manganese (Mn) is a widespread microbial trait that produces reactive Mn(III, IV) oxide minerals. These biominerals drive carbon, nutrient, and trace metal cycles, thus playing important environmental and ecological roles. However, the regulatory mechanisms and physiological functions of Mn biomineralization are unknown. This challenge arises from the common occurrence of multiple Mn oxidases within the same organism and the use of Mn oxides as indicators of combined gene activity. Through the detection of gene activation in individual cells, we discover that expression of mnxG and mcoA, two Mn oxidase-encoding genes in Pseudomonas putida GB-1, is confined to subsets of cells within the population, with each gene showing distinct spatiotemporal patterns that reflect local microenvironments. These coordinated intra-population dynamics control Mn biomineralization and illuminate the strategies used by microbial communities to dictate the extent, location, and timing of biogeochemical transformations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信