Zheng Ye, Deqing Hong, Jiaqi Yuan, Peng Xu, Wenbin Liu
{"title":"评估血浆代谢物对慢性皮肤溃疡风险的影响:一项双样本孟德尔随机化研究","authors":"Zheng Ye, Deqing Hong, Jiaqi Yuan, Peng Xu, Wenbin Liu","doi":"10.1038/s41598-025-94311-8","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic skin ulcers, although rare, pose severe and debilitating challenges. The identification of causal metabolite biomarkers presents an opportunity to refine effective risk assessment strategies for this condition. In this study, we conducted a comprehensive Two-Sample Mendelian Randomization (TSMR) investigation to delineate the potential causal effects of plasma metabolites on chronic skin ulcer risk. Exposure data comprised 14,296 participants with 913 metabolites from INTERVAL/EPIC-Norfolk, and 8,299 participants with 1,091 metabolites and 309 ratios from the Canadian Longitudinal Study on Aging (CLSA). Outcome data came from the finngen_R9_L12_CHRONICULCEROFSKIN (1,840 cases, 353,088 controls) and UK Biobank Chronic ulcer of skin (495 cases, 455,853 controls) cohorts. Leveraging the inverse-variance weighted (IVW) method, alongside MR-Egger and MR-PRESSO sensitivity analyses, we evaluated metabolite associations with chronic skin ulcer risk. Further assessment involved a phenome-wide MR (Phe-MR) analysis to explore potential repercussions of targeting identified metabolites for intervention. Our study identified 12 distinct metabolites significantly associated with chronic skin ulcers, demonstrating consistent and replicable results. Notably, X-19,141 exhibited the highest reproducibility. These findings highlight novel plasma metabolites relevant to chronic skin ulcers, offering theoretical underpinnings for mechanistic research and clinical strategies in prevention and treatment.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10001"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929753/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing the influence of plasma metabolites on chronic skin ulcer risk: a two-sample Mendelian randomization study.\",\"authors\":\"Zheng Ye, Deqing Hong, Jiaqi Yuan, Peng Xu, Wenbin Liu\",\"doi\":\"10.1038/s41598-025-94311-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic skin ulcers, although rare, pose severe and debilitating challenges. The identification of causal metabolite biomarkers presents an opportunity to refine effective risk assessment strategies for this condition. In this study, we conducted a comprehensive Two-Sample Mendelian Randomization (TSMR) investigation to delineate the potential causal effects of plasma metabolites on chronic skin ulcer risk. Exposure data comprised 14,296 participants with 913 metabolites from INTERVAL/EPIC-Norfolk, and 8,299 participants with 1,091 metabolites and 309 ratios from the Canadian Longitudinal Study on Aging (CLSA). Outcome data came from the finngen_R9_L12_CHRONICULCEROFSKIN (1,840 cases, 353,088 controls) and UK Biobank Chronic ulcer of skin (495 cases, 455,853 controls) cohorts. Leveraging the inverse-variance weighted (IVW) method, alongside MR-Egger and MR-PRESSO sensitivity analyses, we evaluated metabolite associations with chronic skin ulcer risk. Further assessment involved a phenome-wide MR (Phe-MR) analysis to explore potential repercussions of targeting identified metabolites for intervention. Our study identified 12 distinct metabolites significantly associated with chronic skin ulcers, demonstrating consistent and replicable results. Notably, X-19,141 exhibited the highest reproducibility. These findings highlight novel plasma metabolites relevant to chronic skin ulcers, offering theoretical underpinnings for mechanistic research and clinical strategies in prevention and treatment.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10001\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929753/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-94311-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94311-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Assessing the influence of plasma metabolites on chronic skin ulcer risk: a two-sample Mendelian randomization study.
Chronic skin ulcers, although rare, pose severe and debilitating challenges. The identification of causal metabolite biomarkers presents an opportunity to refine effective risk assessment strategies for this condition. In this study, we conducted a comprehensive Two-Sample Mendelian Randomization (TSMR) investigation to delineate the potential causal effects of plasma metabolites on chronic skin ulcer risk. Exposure data comprised 14,296 participants with 913 metabolites from INTERVAL/EPIC-Norfolk, and 8,299 participants with 1,091 metabolites and 309 ratios from the Canadian Longitudinal Study on Aging (CLSA). Outcome data came from the finngen_R9_L12_CHRONICULCEROFSKIN (1,840 cases, 353,088 controls) and UK Biobank Chronic ulcer of skin (495 cases, 455,853 controls) cohorts. Leveraging the inverse-variance weighted (IVW) method, alongside MR-Egger and MR-PRESSO sensitivity analyses, we evaluated metabolite associations with chronic skin ulcer risk. Further assessment involved a phenome-wide MR (Phe-MR) analysis to explore potential repercussions of targeting identified metabolites for intervention. Our study identified 12 distinct metabolites significantly associated with chronic skin ulcers, demonstrating consistent and replicable results. Notably, X-19,141 exhibited the highest reproducibility. These findings highlight novel plasma metabolites relevant to chronic skin ulcers, offering theoretical underpinnings for mechanistic research and clinical strategies in prevention and treatment.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.