分数阶非线性Schrödinger方程小振幅单向波的分岔分析。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Safoura Rezaei Aderyani, Reza Saadati, Mohammad Saeid Abolhassanifar, Donal O'Regan
{"title":"分数阶非线性Schrödinger方程小振幅单向波的分岔分析。","authors":"Safoura Rezaei Aderyani, Reza Saadati, Mohammad Saeid Abolhassanifar, Donal O'Regan","doi":"10.1038/s41598-025-94391-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores bifurcation phenomena in the nonlinear time-dependent Schrödinger equation and related models, applying Kudryashov's methods to find exact solutions. It extends the analysis to the nonlinear time fractional Schrödinger equation and the space-time modified Benjamin-Bona-Mahony equation with beta derivatives for fractional dynamics. The paper derives analytical solutions, highlighting the impact of fractional derivatives on wave propagation. A bifurcation analysis shows how parameter changes affect system behavior, with visual representations of wave solutions illustrating the influence of parameters on wave stability and morphology. The work enhances the understanding of fractional differential equations in fields like fluid dynamics, nonlinear optics, and quantum mechanics.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9895"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929899/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bifurcation analysis of small amplitude unidirectional waves for nonlinear Schrödinger equations with fractional derivatives.\",\"authors\":\"Safoura Rezaei Aderyani, Reza Saadati, Mohammad Saeid Abolhassanifar, Donal O'Regan\",\"doi\":\"10.1038/s41598-025-94391-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores bifurcation phenomena in the nonlinear time-dependent Schrödinger equation and related models, applying Kudryashov's methods to find exact solutions. It extends the analysis to the nonlinear time fractional Schrödinger equation and the space-time modified Benjamin-Bona-Mahony equation with beta derivatives for fractional dynamics. The paper derives analytical solutions, highlighting the impact of fractional derivatives on wave propagation. A bifurcation analysis shows how parameter changes affect system behavior, with visual representations of wave solutions illustrating the influence of parameters on wave stability and morphology. The work enhances the understanding of fractional differential equations in fields like fluid dynamics, nonlinear optics, and quantum mechanics.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9895\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929899/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-94391-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94391-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨非线性时相关Schrödinger方程及相关模型的分岔现象,应用Kudryashov方法求精确解。将分析扩展到分数阶动力学的非线性时间分数阶Schrödinger方程和带beta导数的时空修正Benjamin-Bona-Mahony方程。本文导出了解析解,重点讨论了分数阶导数对波传播的影响。分岔分析显示了参数变化如何影响系统行为,用波解的可视化表示说明了参数对波稳定性和形态的影响。这项工作提高了对分数阶微分方程在流体动力学、非线性光学和量子力学等领域的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation analysis of small amplitude unidirectional waves for nonlinear Schrödinger equations with fractional derivatives.

This study explores bifurcation phenomena in the nonlinear time-dependent Schrödinger equation and related models, applying Kudryashov's methods to find exact solutions. It extends the analysis to the nonlinear time fractional Schrödinger equation and the space-time modified Benjamin-Bona-Mahony equation with beta derivatives for fractional dynamics. The paper derives analytical solutions, highlighting the impact of fractional derivatives on wave propagation. A bifurcation analysis shows how parameter changes affect system behavior, with visual representations of wave solutions illustrating the influence of parameters on wave stability and morphology. The work enhances the understanding of fractional differential equations in fields like fluid dynamics, nonlinear optics, and quantum mechanics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信