Laura Bonfili , Francesco Maria Grasselli , Massimiliano Cuccioloni , Valentina Cecarini , Daniela Lufrano , Elena Vittadini , Livio Galosi , Gregorio Sonsini , Massimo Ubaldi , Jonathan Louis Turck , Luis Fernando da Costa Medina , Jan Suchodolski , Anna Maria Eleuteri
{"title":"红扁豆合成饼干对阿尔茨海默病小鼠模型具有神经保护作用。","authors":"Laura Bonfili , Francesco Maria Grasselli , Massimiliano Cuccioloni , Valentina Cecarini , Daniela Lufrano , Elena Vittadini , Livio Galosi , Gregorio Sonsini , Massimo Ubaldi , Jonathan Louis Turck , Luis Fernando da Costa Medina , Jan Suchodolski , Anna Maria Eleuteri","doi":"10.1016/j.jnutbio.2025.109904","DOIUrl":null,"url":null,"abstract":"<div><div>Gut microbiota preservation or rational manipulation is a key condition for healthy longevity and a promising strategy to prevent neurodegenerations exploiting the gut-brain axis, with a key role of prebiotics and probiotics. Whether their combination in a functional food can provide a synergistic effect to the host remains controversial. To fill this gap, we supplemented the diet of 3xTg-AD Alzheimer's disease mice with a red lentils (prebiotic)-based cookie enriched with neuroprotective probiotics and we performed behavioural, biochemical and molecular tests. Chronic consumption of this synbiotic preparation (functional cookie) preserved cognition, reduced amyloid load, improved glucose and lipid homeostasis and diminished oxidation and inflammation related damages compared to animals receiving a classic cookie (standard recipe). The synergistic effect was indicated by significantly higher glucose insulinotropic polypeptide concentrations in the functional cookie group compared to probiotic group. Moreover, Ruminoclostridium sp KB18 and Ruminicoccus decreased in the gut of mice supplemented with the functional cookie, partially explaining the improved short-term memory upon treatments and substantiating the combined use over individual components. This synbiotic innovative snack represents a prototype of a simple and affordable dietary approach to promote healthy aging and prevent or delay the onset of neurodegenerations.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"141 ","pages":"Article 109904"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A red lentils-based synbiotic cookie exerts neuroprotective effects in a mouse model of Alzheimer's disease\",\"authors\":\"Laura Bonfili , Francesco Maria Grasselli , Massimiliano Cuccioloni , Valentina Cecarini , Daniela Lufrano , Elena Vittadini , Livio Galosi , Gregorio Sonsini , Massimo Ubaldi , Jonathan Louis Turck , Luis Fernando da Costa Medina , Jan Suchodolski , Anna Maria Eleuteri\",\"doi\":\"10.1016/j.jnutbio.2025.109904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gut microbiota preservation or rational manipulation is a key condition for healthy longevity and a promising strategy to prevent neurodegenerations exploiting the gut-brain axis, with a key role of prebiotics and probiotics. Whether their combination in a functional food can provide a synergistic effect to the host remains controversial. To fill this gap, we supplemented the diet of 3xTg-AD Alzheimer's disease mice with a red lentils (prebiotic)-based cookie enriched with neuroprotective probiotics and we performed behavioural, biochemical and molecular tests. Chronic consumption of this synbiotic preparation (functional cookie) preserved cognition, reduced amyloid load, improved glucose and lipid homeostasis and diminished oxidation and inflammation related damages compared to animals receiving a classic cookie (standard recipe). The synergistic effect was indicated by significantly higher glucose insulinotropic polypeptide concentrations in the functional cookie group compared to probiotic group. Moreover, Ruminoclostridium sp KB18 and Ruminicoccus decreased in the gut of mice supplemented with the functional cookie, partially explaining the improved short-term memory upon treatments and substantiating the combined use over individual components. This synbiotic innovative snack represents a prototype of a simple and affordable dietary approach to promote healthy aging and prevent or delay the onset of neurodegenerations.</div></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"141 \",\"pages\":\"Article 109904\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286325000671\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286325000671","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A red lentils-based synbiotic cookie exerts neuroprotective effects in a mouse model of Alzheimer's disease
Gut microbiota preservation or rational manipulation is a key condition for healthy longevity and a promising strategy to prevent neurodegenerations exploiting the gut-brain axis, with a key role of prebiotics and probiotics. Whether their combination in a functional food can provide a synergistic effect to the host remains controversial. To fill this gap, we supplemented the diet of 3xTg-AD Alzheimer's disease mice with a red lentils (prebiotic)-based cookie enriched with neuroprotective probiotics and we performed behavioural, biochemical and molecular tests. Chronic consumption of this synbiotic preparation (functional cookie) preserved cognition, reduced amyloid load, improved glucose and lipid homeostasis and diminished oxidation and inflammation related damages compared to animals receiving a classic cookie (standard recipe). The synergistic effect was indicated by significantly higher glucose insulinotropic polypeptide concentrations in the functional cookie group compared to probiotic group. Moreover, Ruminoclostridium sp KB18 and Ruminicoccus decreased in the gut of mice supplemented with the functional cookie, partially explaining the improved short-term memory upon treatments and substantiating the combined use over individual components. This synbiotic innovative snack represents a prototype of a simple and affordable dietary approach to promote healthy aging and prevent or delay the onset of neurodegenerations.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.