纤维素基水凝胶增强与生物活性分子的最佳慢性糖尿病伤口管理。

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Journal of microencapsulation Pub Date : 2025-06-01 Epub Date: 2025-03-23 DOI:10.1080/02652048.2025.2480598
Mahtab Ghasemi Toudeshkchouei, Hassan Abdoos, Jafar Ai, M S Nourbakhsh
{"title":"纤维素基水凝胶增强与生物活性分子的最佳慢性糖尿病伤口管理。","authors":"Mahtab Ghasemi Toudeshkchouei, Hassan Abdoos, Jafar Ai, M S Nourbakhsh","doi":"10.1080/02652048.2025.2480598","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels are three-dimensional structures that replicate natural tissues' extracellular matrix (ECM). They are essential for transporting exudates, gases, and moisture and facilitating cellular interactions in tissue engineering and wound healing. The choice of primary material in designing the scaffold is necessary to be paid more attention rather than common sources, including plant fibres like cotton, bamboo, and algae, as well as bacterial and marine-derived materials. Among them, cellulose-based polymers are especially valued for their biocompatibility and ability to promote wound healing. Chronic diabetic wounds pose unique treatment challenges, such as necrosis and infection risks. Consequently, a growing interest is in incorporating bioactive molecules into cellulose-based hydrogels. This article investigates how these infused hydrogels enhance the healing process in chronic diabetic wounds, examining various loading and crosslinking techniques alongside their clinical applications. It also discusses the benefits and limitations of bioactive molecules and their interactions with hydrogels to improve treatment strategies.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"313-336"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulose-based hydrogels enhanced with bioactive molecules for optimal chronic diabetic wound management.\",\"authors\":\"Mahtab Ghasemi Toudeshkchouei, Hassan Abdoos, Jafar Ai, M S Nourbakhsh\",\"doi\":\"10.1080/02652048.2025.2480598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogels are three-dimensional structures that replicate natural tissues' extracellular matrix (ECM). They are essential for transporting exudates, gases, and moisture and facilitating cellular interactions in tissue engineering and wound healing. The choice of primary material in designing the scaffold is necessary to be paid more attention rather than common sources, including plant fibres like cotton, bamboo, and algae, as well as bacterial and marine-derived materials. Among them, cellulose-based polymers are especially valued for their biocompatibility and ability to promote wound healing. Chronic diabetic wounds pose unique treatment challenges, such as necrosis and infection risks. Consequently, a growing interest is in incorporating bioactive molecules into cellulose-based hydrogels. This article investigates how these infused hydrogels enhance the healing process in chronic diabetic wounds, examining various loading and crosslinking techniques alongside their clinical applications. It also discusses the benefits and limitations of bioactive molecules and their interactions with hydrogels to improve treatment strategies.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\" \",\"pages\":\"313-336\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2025.2480598\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2025.2480598","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶是一种三维结构,可以复制自然组织的细胞外基质(ECM)。它们在组织工程和伤口愈合中运输渗出物、气体和水分以及促进细胞相互作用是必不可少的。在设计支架时,需要更多地关注主要材料的选择,而不是常见的来源,包括棉花、竹子和藻类等植物纤维,以及细菌和海洋来源的材料。其中,纤维素基聚合物因其生物相容性和促进伤口愈合的能力而受到特别重视。慢性糖尿病伤口带来独特的治疗挑战,如坏死和感染风险。因此,人们对将生物活性分子掺入纤维素基水凝胶越来越感兴趣。本文研究了这些注入的水凝胶如何促进慢性糖尿病伤口的愈合过程,研究了各种负载和交联技术及其临床应用。它还讨论了生物活性分子的好处和局限性及其与水凝胶的相互作用,以改善治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellulose-based hydrogels enhanced with bioactive molecules for optimal chronic diabetic wound management.

Hydrogels are three-dimensional structures that replicate natural tissues' extracellular matrix (ECM). They are essential for transporting exudates, gases, and moisture and facilitating cellular interactions in tissue engineering and wound healing. The choice of primary material in designing the scaffold is necessary to be paid more attention rather than common sources, including plant fibres like cotton, bamboo, and algae, as well as bacterial and marine-derived materials. Among them, cellulose-based polymers are especially valued for their biocompatibility and ability to promote wound healing. Chronic diabetic wounds pose unique treatment challenges, such as necrosis and infection risks. Consequently, a growing interest is in incorporating bioactive molecules into cellulose-based hydrogels. This article investigates how these infused hydrogels enhance the healing process in chronic diabetic wounds, examining various loading and crosslinking techniques alongside their clinical applications. It also discusses the benefits and limitations of bioactive molecules and their interactions with hydrogels to improve treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信