脊椎动物c型凝集素簇起源的系统发育和结构研究。

IF 2.9 4区 医学 Q2 GENETICS & HEREDITY
Taiki Ito, Carla Guenther, Eri Ishikawa, Takae Yabuki, Masamichi Nagae, Yoichiro Nakatani, Sho Yamasaki
{"title":"脊椎动物c型凝集素簇起源的系统发育和结构研究。","authors":"Taiki Ito, Carla Guenther, Eri Ishikawa, Takae Yabuki, Masamichi Nagae, Yoichiro Nakatani, Sho Yamasaki","doi":"10.1007/s00251-025-01375-x","DOIUrl":null,"url":null,"abstract":"<p><p>Our bodies are continuously exposed to injurious insults by infection and tissue damage, which are primarily sensed by innate immune receptors to maintain homeostasis. Among such receptors is macrophage-inducible C-type lectin (Mincle, gene symbol CLEC4E), a member of the C-type lectin receptor (CLR) family, which functions as an immune sensor for both pathogens and damaged self. To monitor these injurious stimuli, Mincle recognizes disaccharide-based pathogen-derived glycolipids and monosaccharide-based intracellular metabolites, such as β-glucosylceramide. Mincle is well-conserved among mammals; however, there are questions that remain unclear, such as from which lower vertebrate did it arise and whether the original ligand was self or non-self. Here, we found homologues of Mincle and its signaling subunit Fc receptor γ chain (FcRγ) in lower vertebrates, such as reptiles, amphibians, and fishes. The crystal structure of a Mincle homologue revealed that fish Mincle possesses a narrower sugar-binding pocket than that of mammalian Mincle, and accommodates only monosaccharide moieties. These results suggest that Mincle may have evolved from a self-recognizing receptor, and its sugar-binding pocket widened during evolution, presumably to adapt to disaccharide-based glycolipids derived from life-threatening pathogens.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"77 1","pages":"18"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929736/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phylogenetic and structural insights into the origin of C-type lectin Mincle in vertebrates.\",\"authors\":\"Taiki Ito, Carla Guenther, Eri Ishikawa, Takae Yabuki, Masamichi Nagae, Yoichiro Nakatani, Sho Yamasaki\",\"doi\":\"10.1007/s00251-025-01375-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our bodies are continuously exposed to injurious insults by infection and tissue damage, which are primarily sensed by innate immune receptors to maintain homeostasis. Among such receptors is macrophage-inducible C-type lectin (Mincle, gene symbol CLEC4E), a member of the C-type lectin receptor (CLR) family, which functions as an immune sensor for both pathogens and damaged self. To monitor these injurious stimuli, Mincle recognizes disaccharide-based pathogen-derived glycolipids and monosaccharide-based intracellular metabolites, such as β-glucosylceramide. Mincle is well-conserved among mammals; however, there are questions that remain unclear, such as from which lower vertebrate did it arise and whether the original ligand was self or non-self. Here, we found homologues of Mincle and its signaling subunit Fc receptor γ chain (FcRγ) in lower vertebrates, such as reptiles, amphibians, and fishes. The crystal structure of a Mincle homologue revealed that fish Mincle possesses a narrower sugar-binding pocket than that of mammalian Mincle, and accommodates only monosaccharide moieties. These results suggest that Mincle may have evolved from a self-recognizing receptor, and its sugar-binding pocket widened during evolution, presumably to adapt to disaccharide-based glycolipids derived from life-threatening pathogens.</p>\",\"PeriodicalId\":13446,\"journal\":{\"name\":\"Immunogenetics\",\"volume\":\"77 1\",\"pages\":\"18\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929736/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00251-025-01375-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00251-025-01375-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

我们的身体不断受到感染和组织损伤的伤害,这些伤害主要由先天免疫受体感知,以维持体内平衡。在这些受体中,巨噬细胞诱导的c型凝集素(Mincle,基因符号CLEC4E)是c型凝集素受体(CLR)家族的一员,它作为病原体和受损自我的免疫传感器。为了监测这些有害刺激,Mincle识别基于双糖的病原体衍生糖脂和基于单糖的细胞内代谢物,如β-葡萄糖神经酰胺。Mincle在哺乳动物中保存良好;然而,仍有一些问题尚不清楚,例如它起源于哪种低等脊椎动物,以及原始配体是自我还是非自我。本研究在爬行动物、两栖动物和鱼类等低等脊椎动物中发现了Mincle及其信号亚基Fc受体γ链(FcRγ)的同源物。Mincle同源物的晶体结构表明,鱼类Mincle具有比哺乳动物Mincle更窄的糖结合袋,并且只容纳单糖部分。这些结果表明,Mincle可能是从一种自我识别受体进化而来的,它的糖结合袋在进化过程中变宽了,可能是为了适应来自威胁生命的病原体的基于双糖的糖脂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phylogenetic and structural insights into the origin of C-type lectin Mincle in vertebrates.

Our bodies are continuously exposed to injurious insults by infection and tissue damage, which are primarily sensed by innate immune receptors to maintain homeostasis. Among such receptors is macrophage-inducible C-type lectin (Mincle, gene symbol CLEC4E), a member of the C-type lectin receptor (CLR) family, which functions as an immune sensor for both pathogens and damaged self. To monitor these injurious stimuli, Mincle recognizes disaccharide-based pathogen-derived glycolipids and monosaccharide-based intracellular metabolites, such as β-glucosylceramide. Mincle is well-conserved among mammals; however, there are questions that remain unclear, such as from which lower vertebrate did it arise and whether the original ligand was self or non-self. Here, we found homologues of Mincle and its signaling subunit Fc receptor γ chain (FcRγ) in lower vertebrates, such as reptiles, amphibians, and fishes. The crystal structure of a Mincle homologue revealed that fish Mincle possesses a narrower sugar-binding pocket than that of mammalian Mincle, and accommodates only monosaccharide moieties. These results suggest that Mincle may have evolved from a self-recognizing receptor, and its sugar-binding pocket widened during evolution, presumably to adapt to disaccharide-based glycolipids derived from life-threatening pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunogenetics
Immunogenetics 医学-免疫学
CiteScore
6.20
自引率
6.20%
发文量
48
审稿时长
1 months
期刊介绍: Immunogenetics publishes original papers, brief communications, and reviews on research in the following areas: genetics and evolution of the immune system; genetic control of immune response and disease susceptibility; bioinformatics of the immune system; structure of immunologically important molecules; and immunogenetics of reproductive biology, tissue differentiation, and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信