{"title":"脊椎动物c型凝集素簇起源的系统发育和结构研究。","authors":"Taiki Ito, Carla Guenther, Eri Ishikawa, Takae Yabuki, Masamichi Nagae, Yoichiro Nakatani, Sho Yamasaki","doi":"10.1007/s00251-025-01375-x","DOIUrl":null,"url":null,"abstract":"<p><p>Our bodies are continuously exposed to injurious insults by infection and tissue damage, which are primarily sensed by innate immune receptors to maintain homeostasis. Among such receptors is macrophage-inducible C-type lectin (Mincle, gene symbol CLEC4E), a member of the C-type lectin receptor (CLR) family, which functions as an immune sensor for both pathogens and damaged self. To monitor these injurious stimuli, Mincle recognizes disaccharide-based pathogen-derived glycolipids and monosaccharide-based intracellular metabolites, such as β-glucosylceramide. Mincle is well-conserved among mammals; however, there are questions that remain unclear, such as from which lower vertebrate did it arise and whether the original ligand was self or non-self. Here, we found homologues of Mincle and its signaling subunit Fc receptor γ chain (FcRγ) in lower vertebrates, such as reptiles, amphibians, and fishes. The crystal structure of a Mincle homologue revealed that fish Mincle possesses a narrower sugar-binding pocket than that of mammalian Mincle, and accommodates only monosaccharide moieties. These results suggest that Mincle may have evolved from a self-recognizing receptor, and its sugar-binding pocket widened during evolution, presumably to adapt to disaccharide-based glycolipids derived from life-threatening pathogens.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"77 1","pages":"18"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929736/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phylogenetic and structural insights into the origin of C-type lectin Mincle in vertebrates.\",\"authors\":\"Taiki Ito, Carla Guenther, Eri Ishikawa, Takae Yabuki, Masamichi Nagae, Yoichiro Nakatani, Sho Yamasaki\",\"doi\":\"10.1007/s00251-025-01375-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our bodies are continuously exposed to injurious insults by infection and tissue damage, which are primarily sensed by innate immune receptors to maintain homeostasis. Among such receptors is macrophage-inducible C-type lectin (Mincle, gene symbol CLEC4E), a member of the C-type lectin receptor (CLR) family, which functions as an immune sensor for both pathogens and damaged self. To monitor these injurious stimuli, Mincle recognizes disaccharide-based pathogen-derived glycolipids and monosaccharide-based intracellular metabolites, such as β-glucosylceramide. Mincle is well-conserved among mammals; however, there are questions that remain unclear, such as from which lower vertebrate did it arise and whether the original ligand was self or non-self. Here, we found homologues of Mincle and its signaling subunit Fc receptor γ chain (FcRγ) in lower vertebrates, such as reptiles, amphibians, and fishes. The crystal structure of a Mincle homologue revealed that fish Mincle possesses a narrower sugar-binding pocket than that of mammalian Mincle, and accommodates only monosaccharide moieties. These results suggest that Mincle may have evolved from a self-recognizing receptor, and its sugar-binding pocket widened during evolution, presumably to adapt to disaccharide-based glycolipids derived from life-threatening pathogens.</p>\",\"PeriodicalId\":13446,\"journal\":{\"name\":\"Immunogenetics\",\"volume\":\"77 1\",\"pages\":\"18\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929736/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00251-025-01375-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00251-025-01375-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Phylogenetic and structural insights into the origin of C-type lectin Mincle in vertebrates.
Our bodies are continuously exposed to injurious insults by infection and tissue damage, which are primarily sensed by innate immune receptors to maintain homeostasis. Among such receptors is macrophage-inducible C-type lectin (Mincle, gene symbol CLEC4E), a member of the C-type lectin receptor (CLR) family, which functions as an immune sensor for both pathogens and damaged self. To monitor these injurious stimuli, Mincle recognizes disaccharide-based pathogen-derived glycolipids and monosaccharide-based intracellular metabolites, such as β-glucosylceramide. Mincle is well-conserved among mammals; however, there are questions that remain unclear, such as from which lower vertebrate did it arise and whether the original ligand was self or non-self. Here, we found homologues of Mincle and its signaling subunit Fc receptor γ chain (FcRγ) in lower vertebrates, such as reptiles, amphibians, and fishes. The crystal structure of a Mincle homologue revealed that fish Mincle possesses a narrower sugar-binding pocket than that of mammalian Mincle, and accommodates only monosaccharide moieties. These results suggest that Mincle may have evolved from a self-recognizing receptor, and its sugar-binding pocket widened during evolution, presumably to adapt to disaccharide-based glycolipids derived from life-threatening pathogens.
期刊介绍:
Immunogenetics publishes original papers, brief communications, and reviews on research in the following areas: genetics and evolution of the immune system; genetic control of immune response and disease susceptibility; bioinformatics of the immune system; structure of immunologically important molecules; and immunogenetics of reproductive biology, tissue differentiation, and development.