{"title":"藤黄酸通过抑制糖尿病大鼠氧化应激和炎症减轻肾病。","authors":"Ruttiya Thongrung, Sarawut Lapmanee, Penjai Thongnuanjan Bray, Patlada Suthamwong, Suwaporn Deandee, Kanjana Pangjit, Chaowalit Yuajit","doi":"10.22088/IJMCM.BUMS.14.1.448","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy is a leading cause of end-stage renal disease globally, with limited treatment options to prevent its progression. Gambogic acid (GA), a xanthone isolated from Garcinia hanburyi, has shown notable anti-oxidative, anti-inflammatory, and anti-proliferative properties. This study aimed to assess GA's renoprotective effects in a model of diabetic nephropathy mediated by low dose streptozotocin (STZ) combined with a high-fat diet, focusing on its potential to reduce oxidative stress and inflammation. Control-treated vehicle and STZ/high-fat diet-mediated diabetic rats were administered either the vehicle or 3 or 6 mg/kg of GA to assess its effects on renal inflammation, fibrosis, and oxidative stress. Renal histological changes were assessed, and markers for inflammation and oxidative stress, including I-κBα, p-p38/MAPK, and p-p65NF-κB pathways, were measured to explore the mechanisms of GA. Diabetic rats showed significant renal dysfunction, structural damage, and increased inflammation and fibrosis. Treatment with GA markedly improved renal structure and function. GA also reduced oxidative stress, increased I-κBα expression, and inhibited key signaling pathways, specifically p-p38/MAPK and p-p65NF-κB, involved in cellular inflammation. GA exhibits promising renoprotective effects in diabetic nephropathy by reducing oxidative stress and inflammation, supporting its potential as a natural therapeutic agent for diabetic renal disease.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"14 1","pages":"448-461"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927150/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gambogic Acid Mitigates Nephropathy by Inhibiting Oxidative Stress and Inflammation in Diabetic Rats.\",\"authors\":\"Ruttiya Thongrung, Sarawut Lapmanee, Penjai Thongnuanjan Bray, Patlada Suthamwong, Suwaporn Deandee, Kanjana Pangjit, Chaowalit Yuajit\",\"doi\":\"10.22088/IJMCM.BUMS.14.1.448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic nephropathy is a leading cause of end-stage renal disease globally, with limited treatment options to prevent its progression. Gambogic acid (GA), a xanthone isolated from Garcinia hanburyi, has shown notable anti-oxidative, anti-inflammatory, and anti-proliferative properties. This study aimed to assess GA's renoprotective effects in a model of diabetic nephropathy mediated by low dose streptozotocin (STZ) combined with a high-fat diet, focusing on its potential to reduce oxidative stress and inflammation. Control-treated vehicle and STZ/high-fat diet-mediated diabetic rats were administered either the vehicle or 3 or 6 mg/kg of GA to assess its effects on renal inflammation, fibrosis, and oxidative stress. Renal histological changes were assessed, and markers for inflammation and oxidative stress, including I-κBα, p-p38/MAPK, and p-p65NF-κB pathways, were measured to explore the mechanisms of GA. Diabetic rats showed significant renal dysfunction, structural damage, and increased inflammation and fibrosis. Treatment with GA markedly improved renal structure and function. GA also reduced oxidative stress, increased I-κBα expression, and inhibited key signaling pathways, specifically p-p38/MAPK and p-p65NF-κB, involved in cellular inflammation. GA exhibits promising renoprotective effects in diabetic nephropathy by reducing oxidative stress and inflammation, supporting its potential as a natural therapeutic agent for diabetic renal disease.</p>\",\"PeriodicalId\":14152,\"journal\":{\"name\":\"International Journal of Molecular and Cellular Medicine\",\"volume\":\"14 1\",\"pages\":\"448-461\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927150/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular and Cellular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22088/IJMCM.BUMS.14.1.448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.14.1.448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Gambogic Acid Mitigates Nephropathy by Inhibiting Oxidative Stress and Inflammation in Diabetic Rats.
Diabetic nephropathy is a leading cause of end-stage renal disease globally, with limited treatment options to prevent its progression. Gambogic acid (GA), a xanthone isolated from Garcinia hanburyi, has shown notable anti-oxidative, anti-inflammatory, and anti-proliferative properties. This study aimed to assess GA's renoprotective effects in a model of diabetic nephropathy mediated by low dose streptozotocin (STZ) combined with a high-fat diet, focusing on its potential to reduce oxidative stress and inflammation. Control-treated vehicle and STZ/high-fat diet-mediated diabetic rats were administered either the vehicle or 3 or 6 mg/kg of GA to assess its effects on renal inflammation, fibrosis, and oxidative stress. Renal histological changes were assessed, and markers for inflammation and oxidative stress, including I-κBα, p-p38/MAPK, and p-p65NF-κB pathways, were measured to explore the mechanisms of GA. Diabetic rats showed significant renal dysfunction, structural damage, and increased inflammation and fibrosis. Treatment with GA markedly improved renal structure and function. GA also reduced oxidative stress, increased I-κBα expression, and inhibited key signaling pathways, specifically p-p38/MAPK and p-p65NF-κB, involved in cellular inflammation. GA exhibits promising renoprotective effects in diabetic nephropathy by reducing oxidative stress and inflammation, supporting its potential as a natural therapeutic agent for diabetic renal disease.
期刊介绍:
The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).