Ye An, Jian-Xuan Sun, Si-Yang Ma, Meng-Yao Xu, Jin-Zhou Xu, Chen-Qian Liu, Shao-Gang Wang, Qi-Dong Xia
{"title":"从植物疗法到用于癌症治疗的植物衍生类囊体纳米粒子:过去、现在和未来。","authors":"Ye An, Jian-Xuan Sun, Si-Yang Ma, Meng-Yao Xu, Jin-Zhou Xu, Chen-Qian Liu, Shao-Gang Wang, Qi-Dong Xia","doi":"10.2147/IJN.S499893","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer stands as a formidable malady profoundly impacting human health. Throughout history, plant-based therapies have remained pivotal in the arsenal against cancer, evolving alongside the epochs. Presently, challenges such as the arduous extraction of active components and potential safety concerns impede the progression of plant-based anticancer therapies. The isolation of plant-derived vesicle-like nanoparticles (PDVLNs), a kind of lipid bilayer capsules isolated from plants, has brought plant-based anticancer therapy into a novel realm and has led to decades of research on PDVLNs. Accumulating evidence indicates that PDVLNs can deliver plant-derived active substances to human cells and regulate cellular functions. Regulating immunity, inducing cell cycle arrest, and promoting apoptosis in cancer cells are the most commonly reported mechanisms of PDVLNs in tumor suppression. Low immunogenicity and lack of tumorigenicity make PDVLNs a good platform for drug delivery. The molecules within the PDVLNs are all from source plants, so the selection of source plants is crucial. In recent years, there has been a clear trend that the source plants have changed from vegetables or fruits to medicinal plants. This review highlights the mechanisms of medicinal plant-based cancer therapies to identify candidate source plants. More importantly, the current research on PDVLN-based cancer therapy and the applications of PDVLNs for drug delivery are systematically discussed.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"3471-3491"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927496/pdf/","citationCount":"0","resultStr":"{\"title\":\"From Plant Based Therapy to Plant-Derived Vesicle-Like Nanoparticles for Cancer Treatment: Past, Present and Future.\",\"authors\":\"Ye An, Jian-Xuan Sun, Si-Yang Ma, Meng-Yao Xu, Jin-Zhou Xu, Chen-Qian Liu, Shao-Gang Wang, Qi-Dong Xia\",\"doi\":\"10.2147/IJN.S499893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer stands as a formidable malady profoundly impacting human health. Throughout history, plant-based therapies have remained pivotal in the arsenal against cancer, evolving alongside the epochs. Presently, challenges such as the arduous extraction of active components and potential safety concerns impede the progression of plant-based anticancer therapies. The isolation of plant-derived vesicle-like nanoparticles (PDVLNs), a kind of lipid bilayer capsules isolated from plants, has brought plant-based anticancer therapy into a novel realm and has led to decades of research on PDVLNs. Accumulating evidence indicates that PDVLNs can deliver plant-derived active substances to human cells and regulate cellular functions. Regulating immunity, inducing cell cycle arrest, and promoting apoptosis in cancer cells are the most commonly reported mechanisms of PDVLNs in tumor suppression. Low immunogenicity and lack of tumorigenicity make PDVLNs a good platform for drug delivery. The molecules within the PDVLNs are all from source plants, so the selection of source plants is crucial. In recent years, there has been a clear trend that the source plants have changed from vegetables or fruits to medicinal plants. This review highlights the mechanisms of medicinal plant-based cancer therapies to identify candidate source plants. More importantly, the current research on PDVLN-based cancer therapy and the applications of PDVLNs for drug delivery are systematically discussed.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"20 \",\"pages\":\"3471-3491\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S499893\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S499893","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
From Plant Based Therapy to Plant-Derived Vesicle-Like Nanoparticles for Cancer Treatment: Past, Present and Future.
Cancer stands as a formidable malady profoundly impacting human health. Throughout history, plant-based therapies have remained pivotal in the arsenal against cancer, evolving alongside the epochs. Presently, challenges such as the arduous extraction of active components and potential safety concerns impede the progression of plant-based anticancer therapies. The isolation of plant-derived vesicle-like nanoparticles (PDVLNs), a kind of lipid bilayer capsules isolated from plants, has brought plant-based anticancer therapy into a novel realm and has led to decades of research on PDVLNs. Accumulating evidence indicates that PDVLNs can deliver plant-derived active substances to human cells and regulate cellular functions. Regulating immunity, inducing cell cycle arrest, and promoting apoptosis in cancer cells are the most commonly reported mechanisms of PDVLNs in tumor suppression. Low immunogenicity and lack of tumorigenicity make PDVLNs a good platform for drug delivery. The molecules within the PDVLNs are all from source plants, so the selection of source plants is crucial. In recent years, there has been a clear trend that the source plants have changed from vegetables or fruits to medicinal plants. This review highlights the mechanisms of medicinal plant-based cancer therapies to identify candidate source plants. More importantly, the current research on PDVLN-based cancer therapy and the applications of PDVLNs for drug delivery are systematically discussed.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.