飞行效率的高度约束形成了鸟类翅膀形态的全局梯度。

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jingyi Yang, Chenyue Yang, Hung-Wei Lin, Alexander C Lees, Joseph A Tobias
{"title":"飞行效率的高度约束形成了鸟类翅膀形态的全局梯度。","authors":"Jingyi Yang, Chenyue Yang, Hung-Wei Lin, Alexander C Lees, Joseph A Tobias","doi":"10.1016/j.cub.2025.02.068","DOIUrl":null,"url":null,"abstract":"<p><p>Wings with an elongated shape or larger surface area are associated with increased flight efficiency in a wide range of animals from insects to birds.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup> Inter- and intra-specific variation in these attributes of wing shape is determined by a range of factors-including foraging ecology, migration, and climatic seasonality<sup>5</sup><sup>,</sup><sup>6</sup><sup>,</sup><sup>7</sup><sup>,</sup><sup>8</sup>-all of which may drive latitudinal gradients in wing morphology.<sup>9</sup><sup>,</sup><sup>10</sup> A separate hypothesis predicts that wing shape should also follow an elevational gradient<sup>5</sup><sup>,</sup><sup>11</sup> because air density declines with altitude,<sup>12</sup> altering the aerodynamics of flight and driving the evolution of more efficient wings in high-elevation species to compensate for reduced lift.<sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup> Although previous analyses have shown a tendency for longer or larger wings at higher elevations, at least locally,<sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup><sup>,</sup><sup>19</sup><sup>,</sup><sup>20</sup> it is difficult to rule out a range of alternative explanations since we currently lack a global synthesis of elevational gradients in wing shape for any taxonomic group. In this study, we use phylogenetic models to explore elevational effects on metrics of wing morphology linked to aerodynamic function in 9,982 bird species while simultaneously controlling for multiple climatic factors and ecological attributes of species. We found that relative wing elongation (hand-wing index) and wing area increase with elevation, even when accounting for latitude, temperature seasonality, body mass, habitat, aerial lifestyle, and altitudinal migration. These results confirm a pervasive elevational gradient in avian wing morphology and suggest that aerodynamic constraints linked to air density, perhaps coupled with oxygen deficiency, contribute to global patterns of trait evolution in flying animals.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevational constraints on flight efficiency shape global gradients in avian wing morphology.\",\"authors\":\"Jingyi Yang, Chenyue Yang, Hung-Wei Lin, Alexander C Lees, Joseph A Tobias\",\"doi\":\"10.1016/j.cub.2025.02.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wings with an elongated shape or larger surface area are associated with increased flight efficiency in a wide range of animals from insects to birds.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup> Inter- and intra-specific variation in these attributes of wing shape is determined by a range of factors-including foraging ecology, migration, and climatic seasonality<sup>5</sup><sup>,</sup><sup>6</sup><sup>,</sup><sup>7</sup><sup>,</sup><sup>8</sup>-all of which may drive latitudinal gradients in wing morphology.<sup>9</sup><sup>,</sup><sup>10</sup> A separate hypothesis predicts that wing shape should also follow an elevational gradient<sup>5</sup><sup>,</sup><sup>11</sup> because air density declines with altitude,<sup>12</sup> altering the aerodynamics of flight and driving the evolution of more efficient wings in high-elevation species to compensate for reduced lift.<sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup> Although previous analyses have shown a tendency for longer or larger wings at higher elevations, at least locally,<sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup><sup>,</sup><sup>19</sup><sup>,</sup><sup>20</sup> it is difficult to rule out a range of alternative explanations since we currently lack a global synthesis of elevational gradients in wing shape for any taxonomic group. In this study, we use phylogenetic models to explore elevational effects on metrics of wing morphology linked to aerodynamic function in 9,982 bird species while simultaneously controlling for multiple climatic factors and ecological attributes of species. We found that relative wing elongation (hand-wing index) and wing area increase with elevation, even when accounting for latitude, temperature seasonality, body mass, habitat, aerial lifestyle, and altitudinal migration. These results confirm a pervasive elevational gradient in avian wing morphology and suggest that aerodynamic constraints linked to air density, perhaps coupled with oxygen deficiency, contribute to global patterns of trait evolution in flying animals.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2025.02.068\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.02.068","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从昆虫到鸟类,许多动物的翅膀都具有细长的形状或更大的表面积,这与提高飞行效率有关。1、2、3、4这些翅形属性的种间和种内变化是由一系列因素决定的,包括觅食生态、迁徙和气候季节性5,6,7,8,所有这些因素都可能驱动翅膀形态的纬度梯度。9,10另一种假说预测,翅膀的形状也应遵循海拔梯度,因为空气密度随海拔而下降,从而改变飞行的空气动力学,促使高海拔物种进化出更高效的翅膀,以补偿升力的减少。13,14,15尽管先前的分析表明,至少在局部地区,在海拔较高的地方,翅膀有更长或更大的趋势16,17,18,19,20,但由于我们目前缺乏对任何分类类群翅膀形状的海拔梯度的全球综合,因此很难排除一系列替代解释。在本研究中,我们利用系统发育模型,在控制多种气候因素和物种生态属性的同时,探讨海拔对9982种鸟类翅膀形态指标的影响。我们发现,即使考虑到纬度、温度、体重、栖息地、空中生活方式和海拔迁移等因素,相对翼长(手翼指数)和翼面积也随海拔升高而增加。这些结果证实了鸟类翅膀形态中普遍存在的高度梯度,并表明与空气密度相关的空气动力学约束,可能加上缺氧,有助于飞行动物特征进化的全球模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elevational constraints on flight efficiency shape global gradients in avian wing morphology.

Wings with an elongated shape or larger surface area are associated with increased flight efficiency in a wide range of animals from insects to birds.1,2,3,4 Inter- and intra-specific variation in these attributes of wing shape is determined by a range of factors-including foraging ecology, migration, and climatic seasonality5,6,7,8-all of which may drive latitudinal gradients in wing morphology.9,10 A separate hypothesis predicts that wing shape should also follow an elevational gradient5,11 because air density declines with altitude,12 altering the aerodynamics of flight and driving the evolution of more efficient wings in high-elevation species to compensate for reduced lift.13,14,15 Although previous analyses have shown a tendency for longer or larger wings at higher elevations, at least locally,16,17,18,19,20 it is difficult to rule out a range of alternative explanations since we currently lack a global synthesis of elevational gradients in wing shape for any taxonomic group. In this study, we use phylogenetic models to explore elevational effects on metrics of wing morphology linked to aerodynamic function in 9,982 bird species while simultaneously controlling for multiple climatic factors and ecological attributes of species. We found that relative wing elongation (hand-wing index) and wing area increase with elevation, even when accounting for latitude, temperature seasonality, body mass, habitat, aerial lifestyle, and altitudinal migration. These results confirm a pervasive elevational gradient in avian wing morphology and suggest that aerodynamic constraints linked to air density, perhaps coupled with oxygen deficiency, contribute to global patterns of trait evolution in flying animals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信