Stefan Pinkert, Victoria Reuber, Lena-Marie Krug, Lea Heidrich, Finn Rehling, Roland Brandl, Nina Farwig
{"title":"挖洞有助于哺乳动物在恶劣多变的气候中生存。","authors":"Stefan Pinkert, Victoria Reuber, Lena-Marie Krug, Lea Heidrich, Finn Rehling, Roland Brandl, Nina Farwig","doi":"10.1016/j.cub.2025.02.064","DOIUrl":null,"url":null,"abstract":"<p><p>Species' ability to cope with climatic instability varies greatly, influenced by factors such as dispersal, physiological adaptations, and phylogenetic conservatism. Here, we investigate how burrowing behavior, a key component of species' endurance strategies and ecosystem functioning, shaped the contemporary patterns of species richness and range size as well as the diversification of mammalian lineages. Analyzing 4,407 terrestrial mammal species, excluding bats, combined with novel trait data on 3,096 species, we reveal contrasting responses to climatic factors between burrowing and non-burrowing species. Burrowing lineages are disproportionately species-rich at lower temperatures and productivity. Both range size and species richness steeply increase with climate seasonality in burrowing species as opposed to non-burrowing species. The proportion of burrowing species increases with latitude, with regions above 20°, especially those exhibiting greater Pleistocene temperature changes, being almost exclusively composed of burrowing species. Trait conservatism, higher net diversification rates, and Eocene peak diversification provide the evolutionary context for these contemporary patterns, underscoring the role of burrowing for mammalian radiations into temperate climates. Moreover, the lower extinction rate of burrowing species and peak diversification at the Cretaceous-Paleogene (K-Pg) boundary support the longstanding hypothesis that burrowing behavior promoted survival during the \"impact winter\" that marks the replacement of non-avian dinosaurs by mammals. Our study highlights the potential of readily available trait information for understanding the ecological and evolutionary processes that shape species distributions through space and time. The careful integration of divergent environmental constraints bears vast improvements for forecasts of species' responses to climatic changes and global models of biodiversity patterns.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Burrowing facilitated the survival of mammals in harsh and fluctuating climates.\",\"authors\":\"Stefan Pinkert, Victoria Reuber, Lena-Marie Krug, Lea Heidrich, Finn Rehling, Roland Brandl, Nina Farwig\",\"doi\":\"10.1016/j.cub.2025.02.064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Species' ability to cope with climatic instability varies greatly, influenced by factors such as dispersal, physiological adaptations, and phylogenetic conservatism. Here, we investigate how burrowing behavior, a key component of species' endurance strategies and ecosystem functioning, shaped the contemporary patterns of species richness and range size as well as the diversification of mammalian lineages. Analyzing 4,407 terrestrial mammal species, excluding bats, combined with novel trait data on 3,096 species, we reveal contrasting responses to climatic factors between burrowing and non-burrowing species. Burrowing lineages are disproportionately species-rich at lower temperatures and productivity. Both range size and species richness steeply increase with climate seasonality in burrowing species as opposed to non-burrowing species. The proportion of burrowing species increases with latitude, with regions above 20°, especially those exhibiting greater Pleistocene temperature changes, being almost exclusively composed of burrowing species. Trait conservatism, higher net diversification rates, and Eocene peak diversification provide the evolutionary context for these contemporary patterns, underscoring the role of burrowing for mammalian radiations into temperate climates. Moreover, the lower extinction rate of burrowing species and peak diversification at the Cretaceous-Paleogene (K-Pg) boundary support the longstanding hypothesis that burrowing behavior promoted survival during the \\\"impact winter\\\" that marks the replacement of non-avian dinosaurs by mammals. Our study highlights the potential of readily available trait information for understanding the ecological and evolutionary processes that shape species distributions through space and time. The careful integration of divergent environmental constraints bears vast improvements for forecasts of species' responses to climatic changes and global models of biodiversity patterns.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2025.02.064\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.02.064","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Burrowing facilitated the survival of mammals in harsh and fluctuating climates.
Species' ability to cope with climatic instability varies greatly, influenced by factors such as dispersal, physiological adaptations, and phylogenetic conservatism. Here, we investigate how burrowing behavior, a key component of species' endurance strategies and ecosystem functioning, shaped the contemporary patterns of species richness and range size as well as the diversification of mammalian lineages. Analyzing 4,407 terrestrial mammal species, excluding bats, combined with novel trait data on 3,096 species, we reveal contrasting responses to climatic factors between burrowing and non-burrowing species. Burrowing lineages are disproportionately species-rich at lower temperatures and productivity. Both range size and species richness steeply increase with climate seasonality in burrowing species as opposed to non-burrowing species. The proportion of burrowing species increases with latitude, with regions above 20°, especially those exhibiting greater Pleistocene temperature changes, being almost exclusively composed of burrowing species. Trait conservatism, higher net diversification rates, and Eocene peak diversification provide the evolutionary context for these contemporary patterns, underscoring the role of burrowing for mammalian radiations into temperate climates. Moreover, the lower extinction rate of burrowing species and peak diversification at the Cretaceous-Paleogene (K-Pg) boundary support the longstanding hypothesis that burrowing behavior promoted survival during the "impact winter" that marks the replacement of non-avian dinosaurs by mammals. Our study highlights the potential of readily available trait information for understanding the ecological and evolutionary processes that shape species distributions through space and time. The careful integration of divergent environmental constraints bears vast improvements for forecasts of species' responses to climatic changes and global models of biodiversity patterns.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.