对cGAS活性位点的结构洞察解释了治疗相关物种之间的差异。

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alexander M Skeldon, Li Wang, Nicolas Sgarioto, Ramsay E Beveridge, Silas Chan, Stephane Dorich, Valerie Dumais, Nadine Fradet, Samuel Gaudreault, Philippe LeGros, Daniel McKay, Ria Seliniotakis, Daniel V Sietsema, Lingling Zhang, Marc-Olivier Boily, Jason D Burch, Alex Caron, Lee D Fader, Lodoe Lama, Wei Xie, Dinshaw J Patel, Thomas Tuschl, Michael A Crackower, Kelly A Pike
{"title":"对cGAS活性位点的结构洞察解释了治疗相关物种之间的差异。","authors":"Alexander M Skeldon, Li Wang, Nicolas Sgarioto, Ramsay E Beveridge, Silas Chan, Stephane Dorich, Valerie Dumais, Nadine Fradet, Samuel Gaudreault, Philippe LeGros, Daniel McKay, Ria Seliniotakis, Daniel V Sietsema, Lingling Zhang, Marc-Olivier Boily, Jason D Burch, Alex Caron, Lee D Fader, Lodoe Lama, Wei Xie, Dinshaw J Patel, Thomas Tuschl, Michael A Crackower, Kelly A Pike","doi":"10.1038/s42004-025-01481-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclic GMP-AMP synthase (cGAS) is an intracellular sensor of double-stranded DNA that triggers a pro-inflammatory response upon binding. The interest in cGAS as a drug discovery target has increased substantially over the past decade due to growing evidence linking its activation to numerous peripheral and neurological diseases. Here, we report the binding mode of previously described cGAS inhibitors while also uncovering the structural basis for the interspecies potency shifts within this chemotype. A single threonine to isoleucine substitution between human and mouse cGAS drives compound activity, as demonstrated by biochemical, cellular, and in vivo studies. Finally, we utilize a structurally enabled design approach to engineer a novel chemical inhibitor with excellent potency for both human and mouse enzymes by targeting key interactions within the enzyme active site. Overall, this work provides the framework for rational optimization of cGAS inhibitors and potential preclinical translational strategies.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"88"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929900/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural insight into the cGAS active site explains differences between therapeutically relevant species.\",\"authors\":\"Alexander M Skeldon, Li Wang, Nicolas Sgarioto, Ramsay E Beveridge, Silas Chan, Stephane Dorich, Valerie Dumais, Nadine Fradet, Samuel Gaudreault, Philippe LeGros, Daniel McKay, Ria Seliniotakis, Daniel V Sietsema, Lingling Zhang, Marc-Olivier Boily, Jason D Burch, Alex Caron, Lee D Fader, Lodoe Lama, Wei Xie, Dinshaw J Patel, Thomas Tuschl, Michael A Crackower, Kelly A Pike\",\"doi\":\"10.1038/s42004-025-01481-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyclic GMP-AMP synthase (cGAS) is an intracellular sensor of double-stranded DNA that triggers a pro-inflammatory response upon binding. The interest in cGAS as a drug discovery target has increased substantially over the past decade due to growing evidence linking its activation to numerous peripheral and neurological diseases. Here, we report the binding mode of previously described cGAS inhibitors while also uncovering the structural basis for the interspecies potency shifts within this chemotype. A single threonine to isoleucine substitution between human and mouse cGAS drives compound activity, as demonstrated by biochemical, cellular, and in vivo studies. Finally, we utilize a structurally enabled design approach to engineer a novel chemical inhibitor with excellent potency for both human and mouse enzymes by targeting key interactions within the enzyme active site. Overall, this work provides the framework for rational optimization of cGAS inhibitors and potential preclinical translational strategies.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"88\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929900/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-025-01481-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01481-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

环GMP-AMP合成酶(cGAS)是双链DNA的细胞内传感器,结合后触发促炎反应。在过去的十年中,由于越来越多的证据将cGAS的激活与许多外周和神经系统疾病联系起来,cGAS作为药物发现靶点的兴趣大大增加。在这里,我们报告了先前描述的cGAS抑制剂的结合模式,同时也揭示了该化学型中种间效力变化的结构基础。生化、细胞和体内研究证明,人类和小鼠cGAS之间的单苏氨酸到异亮氨酸的替代驱动化合物活性。最后,我们利用一种结构激活的设计方法来设计一种新的化学抑制剂,通过靶向酶活性位点内的关键相互作用,对人类和小鼠酶都具有良好的效力。总的来说,这项工作为合理优化cGAS抑制剂和潜在的临床前转化策略提供了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural insight into the cGAS active site explains differences between therapeutically relevant species.

Cyclic GMP-AMP synthase (cGAS) is an intracellular sensor of double-stranded DNA that triggers a pro-inflammatory response upon binding. The interest in cGAS as a drug discovery target has increased substantially over the past decade due to growing evidence linking its activation to numerous peripheral and neurological diseases. Here, we report the binding mode of previously described cGAS inhibitors while also uncovering the structural basis for the interspecies potency shifts within this chemotype. A single threonine to isoleucine substitution between human and mouse cGAS drives compound activity, as demonstrated by biochemical, cellular, and in vivo studies. Finally, we utilize a structurally enabled design approach to engineer a novel chemical inhibitor with excellent potency for both human and mouse enzymes by targeting key interactions within the enzyme active site. Overall, this work provides the framework for rational optimization of cGAS inhibitors and potential preclinical translational strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信