胃保留性给药系统:口服给药的圣杯。

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Hossein Omidian
{"title":"胃保留性给药系统:口服给药的圣杯。","authors":"Hossein Omidian","doi":"10.1016/j.drudis.2025.104340","DOIUrl":null,"url":null,"abstract":"<div><div>Gastroretentive drug delivery systems (GRDDSs) offer a promising strategy for enhancing oral drug bioavailability by prolonging gastric residence time and enabling site-specific drug release. This review examines the key materials used in GRDDSs, including polymers for controlled drug release, gas-generating agents for buoyancy, and mucoadhesive components for improved retention and stability. Advances in fabrication techniques, such as 3D printing, spray drying, and nanoparticle encapsulation, have enabled precise modulation of drug release kinetics and retention properties. However, challenges such as inter-subject variability, physiological constraints, and manufacturing scalability remain. Future research will focus on smart materials, multi-drug platforms, and expanding applications to biologics and nutraceuticals, paving the way for more effective and patient-compliant oral drug delivery systems.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"30 4","pages":"Article 104340"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gastroretentive drug delivery systems: A holy grail in oral delivery\",\"authors\":\"Hossein Omidian\",\"doi\":\"10.1016/j.drudis.2025.104340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gastroretentive drug delivery systems (GRDDSs) offer a promising strategy for enhancing oral drug bioavailability by prolonging gastric residence time and enabling site-specific drug release. This review examines the key materials used in GRDDSs, including polymers for controlled drug release, gas-generating agents for buoyancy, and mucoadhesive components for improved retention and stability. Advances in fabrication techniques, such as 3D printing, spray drying, and nanoparticle encapsulation, have enabled precise modulation of drug release kinetics and retention properties. However, challenges such as inter-subject variability, physiological constraints, and manufacturing scalability remain. Future research will focus on smart materials, multi-drug platforms, and expanding applications to biologics and nutraceuticals, paving the way for more effective and patient-compliant oral drug delivery systems.</div></div>\",\"PeriodicalId\":301,\"journal\":{\"name\":\"Drug Discovery Today\",\"volume\":\"30 4\",\"pages\":\"Article 104340\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359644625000534\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644625000534","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

胃保留性药物传递系统(grdds)通过延长胃停留时间和实现特定部位的药物释放,为提高口服药物的生物利用度提供了一种很有前途的策略。本文综述了用于grdss的关键材料,包括用于控制药物释放的聚合物,用于浮力的气体生成剂,以及用于改善保留性和稳定性的黏附成分。制造技术的进步,如3D打印、喷雾干燥和纳米颗粒封装,使药物释放动力学和保留特性的精确调节成为可能。然而,诸如学科间可变性、生理限制和制造可扩展性等挑战仍然存在。未来的研究将集中在智能材料,多药物平台,以及扩展到生物制剂和营养药品的应用,为更有效和符合患者要求的口服药物输送系统铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gastroretentive drug delivery systems: A holy grail in oral delivery
Gastroretentive drug delivery systems (GRDDSs) offer a promising strategy for enhancing oral drug bioavailability by prolonging gastric residence time and enabling site-specific drug release. This review examines the key materials used in GRDDSs, including polymers for controlled drug release, gas-generating agents for buoyancy, and mucoadhesive components for improved retention and stability. Advances in fabrication techniques, such as 3D printing, spray drying, and nanoparticle encapsulation, have enabled precise modulation of drug release kinetics and retention properties. However, challenges such as inter-subject variability, physiological constraints, and manufacturing scalability remain. Future research will focus on smart materials, multi-drug platforms, and expanding applications to biologics and nutraceuticals, paving the way for more effective and patient-compliant oral drug delivery systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信