催化量的磺酸钠-萘酚使机械坚固,超透明,超耐火,易于回收的聚碳酸酯。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yue Li, Lin Chen, Pan Deng, Yan Guo, Xiu-Li Wang, Yu-Zhong Wang
{"title":"催化量的磺酸钠-萘酚使机械坚固,超透明,超耐火,易于回收的聚碳酸酯。","authors":"Yue Li, Lin Chen, Pan Deng, Yan Guo, Xiu-Li Wang, Yu-Zhong Wang","doi":"10.1039/d5mh00260e","DOIUrl":null,"url":null,"abstract":"<p><p>Polycarbonate is an advanced engineering plastic widely used in aerospace, high-speed rail and 5G communications. However, it remains a huge challenge to synthesize polycarbonate materials using a strategy that simultaneously integrates green-preparation, service-stage advanced-performance and end-of-life easy-recyclability. Herein, we propose an ultrahigh-efficiency and green halogen/phosphorus-free strategy to prepare a mechanically robust, highly transparent, super-fire-resistant and chemically easily recyclable polycarbonate plastic. By chemical copolymerization of only catalytic amounts of sodium sulfonate-naphthol (0.3-0.5 mol%, namely 3400-5600 ppm), the corresponding polycarbonates exhibit >85 MPa tensile strength, >67 kJ m<sup>-2</sup> notched impact strength, >90% transparency, >36% ultra-high limiting oxygen index and 1.6 mm thin-wall UL-94 V-0 rating during the service-stage. Especially, at the end-of-life, these polycarbonates can be easily depolymerized back to the raw monomer bisphenol A and high-value 2-oxazolidinone under mild conditions (50 °C for 4 h), achieving ultra-high atom-economic chemical recycling. Starting from the source of a chemical structure, this work opens up a new perspective for constructing life cycle-managed plastic materials with advanced high-performance and full-recyclability, contributing to the global circular economy through sustainable material design.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic amounts of sodium-sulfonate-naphthol enable mechanically robust, ultra-transparent, super-fire-resistant and easily recyclable polycarbonate.\",\"authors\":\"Yue Li, Lin Chen, Pan Deng, Yan Guo, Xiu-Li Wang, Yu-Zhong Wang\",\"doi\":\"10.1039/d5mh00260e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polycarbonate is an advanced engineering plastic widely used in aerospace, high-speed rail and 5G communications. However, it remains a huge challenge to synthesize polycarbonate materials using a strategy that simultaneously integrates green-preparation, service-stage advanced-performance and end-of-life easy-recyclability. Herein, we propose an ultrahigh-efficiency and green halogen/phosphorus-free strategy to prepare a mechanically robust, highly transparent, super-fire-resistant and chemically easily recyclable polycarbonate plastic. By chemical copolymerization of only catalytic amounts of sodium sulfonate-naphthol (0.3-0.5 mol%, namely 3400-5600 ppm), the corresponding polycarbonates exhibit >85 MPa tensile strength, >67 kJ m<sup>-2</sup> notched impact strength, >90% transparency, >36% ultra-high limiting oxygen index and 1.6 mm thin-wall UL-94 V-0 rating during the service-stage. Especially, at the end-of-life, these polycarbonates can be easily depolymerized back to the raw monomer bisphenol A and high-value 2-oxazolidinone under mild conditions (50 °C for 4 h), achieving ultra-high atom-economic chemical recycling. Starting from the source of a chemical structure, this work opens up a new perspective for constructing life cycle-managed plastic materials with advanced high-performance and full-recyclability, contributing to the global circular economy through sustainable material design.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh00260e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00260e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚碳酸酯是一种先进的工程塑料,广泛用于航空航天、高铁和5G通信。然而,合成聚碳酸酯材料的策略仍然是一个巨大的挑战,该策略同时集成了绿色制备,服务阶段的先进性能和报废后的易于回收性。在此,我们提出了一种超高效率和绿色无卤/无磷策略,以制备机械坚固,高透明,超耐火且化学上易于回收的聚碳酸酯塑料。仅催化量的磺酸钠-萘酚(0.3-0.5 mol%,即3400-5600 ppm)化学共聚得到的聚碳酸酯在使用阶段具有>85 MPa的抗拉强度,>67 kJ m-2的凹口冲击强度,>90%的透明度,>36%的超高极限氧指数和1.6 mm薄壁UL-94 V-0等级。特别是,在使用寿命结束时,这些聚碳酸酯可以在温和的条件下(50°C, 4 h)很容易解聚回原料单体双酚A和高值2-恶唑烷酮,实现超高的原子经济化学回收。这项工作从化学结构的源头出发,为构建具有先进高性能和完全可回收性的生命周期管理塑料材料开辟了新的视角,通过可持续的材料设计为全球循环经济做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catalytic amounts of sodium-sulfonate-naphthol enable mechanically robust, ultra-transparent, super-fire-resistant and easily recyclable polycarbonate.

Polycarbonate is an advanced engineering plastic widely used in aerospace, high-speed rail and 5G communications. However, it remains a huge challenge to synthesize polycarbonate materials using a strategy that simultaneously integrates green-preparation, service-stage advanced-performance and end-of-life easy-recyclability. Herein, we propose an ultrahigh-efficiency and green halogen/phosphorus-free strategy to prepare a mechanically robust, highly transparent, super-fire-resistant and chemically easily recyclable polycarbonate plastic. By chemical copolymerization of only catalytic amounts of sodium sulfonate-naphthol (0.3-0.5 mol%, namely 3400-5600 ppm), the corresponding polycarbonates exhibit >85 MPa tensile strength, >67 kJ m-2 notched impact strength, >90% transparency, >36% ultra-high limiting oxygen index and 1.6 mm thin-wall UL-94 V-0 rating during the service-stage. Especially, at the end-of-life, these polycarbonates can be easily depolymerized back to the raw monomer bisphenol A and high-value 2-oxazolidinone under mild conditions (50 °C for 4 h), achieving ultra-high atom-economic chemical recycling. Starting from the source of a chemical structure, this work opens up a new perspective for constructing life cycle-managed plastic materials with advanced high-performance and full-recyclability, contributing to the global circular economy through sustainable material design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信