磷脂生物合成:核代谢不可预见的调节剂

IF 2.4 4区 生物学 Q4 CELL BIOLOGY
Hong Qiu, Cunqi Ye
{"title":"磷脂生物合成:核代谢不可预见的调节剂","authors":"Hong Qiu,&nbsp;Cunqi Ye","doi":"10.1111/boc.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glycerophospholipid biosynthesis is crucial not only for providing structural components required for membrane biogenesis during cell proliferation but also for facilitating membrane remodeling under stress conditions. The biosynthetic pathways for glycerophospholipid tails, glycerol backbones, and diverse head group classes intersect with various other metabolic processes, sharing intermediary metabolites. Recent studies have revealed intricate connections between glycerophospholipid synthesis and nuclear metabolism, including metabolite-mediated crosstalk with the epigenome, signaling pathways that govern genome integrity, and CTP-involved regulation of nucleotide and antioxidant biosynthesis. This review highlights recent advances in understanding the functional roles of glycerophospholipid biosynthesis beyond their structural functions in budding yeast and mammalian cells. We propose that glycerophospholipid biosynthesis plays an integrative role in metabolic regulation, providing a new perspective on lipid biology.</p>\n </div>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"117 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phospholipid Biosynthesis: An Unforeseen Modulator of Nuclear Metabolism\",\"authors\":\"Hong Qiu,&nbsp;Cunqi Ye\",\"doi\":\"10.1111/boc.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Glycerophospholipid biosynthesis is crucial not only for providing structural components required for membrane biogenesis during cell proliferation but also for facilitating membrane remodeling under stress conditions. The biosynthetic pathways for glycerophospholipid tails, glycerol backbones, and diverse head group classes intersect with various other metabolic processes, sharing intermediary metabolites. Recent studies have revealed intricate connections between glycerophospholipid synthesis and nuclear metabolism, including metabolite-mediated crosstalk with the epigenome, signaling pathways that govern genome integrity, and CTP-involved regulation of nucleotide and antioxidant biosynthesis. This review highlights recent advances in understanding the functional roles of glycerophospholipid biosynthesis beyond their structural functions in budding yeast and mammalian cells. We propose that glycerophospholipid biosynthesis plays an integrative role in metabolic regulation, providing a new perspective on lipid biology.</p>\\n </div>\",\"PeriodicalId\":8859,\"journal\":{\"name\":\"Biology of the Cell\",\"volume\":\"117 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/boc.70002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/boc.70002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

甘油磷脂的生物合成不仅对提供细胞增殖过程中膜生物生成所需的结构成分至关重要,而且对促进应激条件下的膜重塑至关重要。甘油磷脂尾部、甘油主干和不同头类的生物合成途径与各种其他代谢过程相交,共享中间代谢物。最近的研究揭示了甘油磷脂合成与核代谢之间的复杂联系,包括代谢物介导的与表观基因组的串扰,控制基因组完整性的信号通路,以及ctp参与的核苷酸和抗氧化剂生物合成的调节。本文综述了甘油磷脂生物合成在出芽酵母和哺乳动物细胞中的结构功能之外的功能作用的最新进展。我们提出甘油磷脂的生物合成在代谢调节中起着综合作用,为脂质生物学提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phospholipid Biosynthesis: An Unforeseen Modulator of Nuclear Metabolism

Phospholipid Biosynthesis: An Unforeseen Modulator of Nuclear Metabolism

Glycerophospholipid biosynthesis is crucial not only for providing structural components required for membrane biogenesis during cell proliferation but also for facilitating membrane remodeling under stress conditions. The biosynthetic pathways for glycerophospholipid tails, glycerol backbones, and diverse head group classes intersect with various other metabolic processes, sharing intermediary metabolites. Recent studies have revealed intricate connections between glycerophospholipid synthesis and nuclear metabolism, including metabolite-mediated crosstalk with the epigenome, signaling pathways that govern genome integrity, and CTP-involved regulation of nucleotide and antioxidant biosynthesis. This review highlights recent advances in understanding the functional roles of glycerophospholipid biosynthesis beyond their structural functions in budding yeast and mammalian cells. We propose that glycerophospholipid biosynthesis plays an integrative role in metabolic regulation, providing a new perspective on lipid biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology of the Cell
Biology of the Cell 生物-细胞生物学
CiteScore
5.30
自引率
0.00%
发文量
53
审稿时长
>12 weeks
期刊介绍: The journal publishes original research articles and reviews on all aspects of cellular, molecular and structural biology, developmental biology, cell physiology and evolution. It will publish articles or reviews contributing to the understanding of the elementary biochemical and biophysical principles of live matter organization from the molecular, cellular and tissues scales and organisms. This includes contributions directed towards understanding biochemical and biophysical mechanisms, structure-function relationships with respect to basic cell and tissue functions, development, development/evolution relationship, morphogenesis, stem cell biology, cell biology of disease, plant cell biology, as well as contributions directed toward understanding integrated processes at the organelles, cell and tissue levels. Contributions using approaches such as high resolution imaging, live imaging, quantitative cell biology and integrated biology; as well as those using innovative genetic and epigenetic technologies, ex-vivo tissue engineering, cellular, tissue and integrated functional analysis, and quantitative biology and modeling to demonstrate original biological principles are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信