封闭盆地近惯性运动的天气观测

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Erica L. Green, Samuel M. Kelly, Andrew J. Lucas, Jay A. Austin, Jonathan D. Nash
{"title":"封闭盆地近惯性运动的天气观测","authors":"Erica L. Green,&nbsp;Samuel M. Kelly,&nbsp;Andrew J. Lucas,&nbsp;Jay A. Austin,&nbsp;Jonathan D. Nash","doi":"10.1029/2024JC021828","DOIUrl":null,"url":null,"abstract":"<p>Near-inertial motions are common in the coastal ocean, producing significant currents, isopycnal displacements, and turbulent mixing. Unknown fractions of near-inertial energy are locally dissipated in the mixed layer and converted to offshore propagating internal waves along the coast. Here, we examine near-inertial motions from July to October 2017 at 10 moorings in Lake Superior, which provides a natural laboratory for the coastal ocean. The lake has an approximate two-layer structure and is dominated by near-inertial currents that reach 0.50 m <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{s}}^{-1}$</annotation>\n </semantics></math> and isopycnal displacements that reach 10 m. Average mode-1 near-inertial kinetic energy (KE) and available potential energy (APE) are 320 J <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math> and 10 J <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math>, respectively. KE is inhibited near the coast and APE has no basin-wide structure. Velocity is separated into a basin-averaged inertial oscillation (IO) and a near inertial wave (NIW) residual. A slab model explains 87% of the IO variance, while the NIW field exhibits 5 W <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-1}$</annotation>\n </semantics></math> offshore energy fluxes along the coasts, a group speed of 0.1 m <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{s}}^{-1}$</annotation>\n </semantics></math>, and a wavelength of 60 km. The IOs and NIWs contain 200 J <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math> and 120 J <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math>, respectively. We determine that 1.0 mW <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math> of wind work goes into to IOs, and 60% of this power is locally dissipated, while the other 40% is converted to NIWs at the coasts. IOs are found to dissipate more rapidly than NIWs (4.4 vs. 7.2 days residence time). NIWs are hypothesized to be important for catalyzing shear instabilities that drive turbulence.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021828","citationCount":"0","resultStr":"{\"title\":\"Synoptic Observations of Near-Inertial Motions in an Enclosed Basin\",\"authors\":\"Erica L. Green,&nbsp;Samuel M. Kelly,&nbsp;Andrew J. Lucas,&nbsp;Jay A. Austin,&nbsp;Jonathan D. Nash\",\"doi\":\"10.1029/2024JC021828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Near-inertial motions are common in the coastal ocean, producing significant currents, isopycnal displacements, and turbulent mixing. Unknown fractions of near-inertial energy are locally dissipated in the mixed layer and converted to offshore propagating internal waves along the coast. Here, we examine near-inertial motions from July to October 2017 at 10 moorings in Lake Superior, which provides a natural laboratory for the coastal ocean. The lake has an approximate two-layer structure and is dominated by near-inertial currents that reach 0.50 m <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{s}}^{-1}$</annotation>\\n </semantics></math> and isopycnal displacements that reach 10 m. Average mode-1 near-inertial kinetic energy (KE) and available potential energy (APE) are 320 J <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{-2}$</annotation>\\n </semantics></math> and 10 J <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{-2}$</annotation>\\n </semantics></math>, respectively. KE is inhibited near the coast and APE has no basin-wide structure. Velocity is separated into a basin-averaged inertial oscillation (IO) and a near inertial wave (NIW) residual. A slab model explains 87% of the IO variance, while the NIW field exhibits 5 W <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{-1}$</annotation>\\n </semantics></math> offshore energy fluxes along the coasts, a group speed of 0.1 m <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{s}}^{-1}$</annotation>\\n </semantics></math>, and a wavelength of 60 km. The IOs and NIWs contain 200 J <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{-2}$</annotation>\\n </semantics></math> and 120 J <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{-2}$</annotation>\\n </semantics></math>, respectively. We determine that 1.0 mW <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{-2}$</annotation>\\n </semantics></math> of wind work goes into to IOs, and 60% of this power is locally dissipated, while the other 40% is converted to NIWs at the coasts. IOs are found to dissipate more rapidly than NIWs (4.4 vs. 7.2 days residence time). NIWs are hypothesized to be important for catalyzing shear instabilities that drive turbulence.</p>\",\"PeriodicalId\":54340,\"journal\":{\"name\":\"Journal of Geophysical Research-Oceans\",\"volume\":\"130 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021828\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research-Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021828\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021828","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

近惯性运动在沿海海洋中很常见,产生显著的洋流、等平位移和湍流混合。近惯性能量的未知部分在混合层局部耗散,并沿海岸转换成近海传播的内波。在这里,我们研究了2017年7月至10月在苏必利尔湖的10个系泊处的近惯性运动,苏必利尔湖为沿海海洋提供了一个天然实验室。湖泊结构近似为两层结构,主要为近惯性流(0.50 m s−1 ${\mathrm{s}}^{-1}$)和等轴位移(10 m)。平均模一近惯性动能(KE)和有效势能(APE)分别为320 J m−2 ${\mathrm{m}}^{-2}$和10 J m−2 ${\mathrm{m}}^{-2}$。KE在海岸附近受到抑制,APE无全盆地构造。将速度分解为盆地平均惯性振荡(IO)和近惯性振荡(NIW)残差。平板模式解释了87%的IO变化,而NIW场呈现出沿海岸的5 W m−1 ${\ mathm {m}}^{-1}$近海能量通量。群速为0.1 m s−1 ${\mathrm{s}}^{-1}$,波长为60 km。IOs和niw包含200j m−2 ${\mathrm{m}}^{-2}$和120j m−2${\ mathm {m}}^{-2}$。我们确定1.0 mW m−2 ${\ mathm {m}}^{-2}$的风功进入IOs,其中60%的功率在局部消散,而另外40%在海岸转换为NIWs。IOs比NIWs消散得更快(4.4天vs 7.2天)。假设NIWs对催化驱动湍流的剪切不稳定性很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synoptic Observations of Near-Inertial Motions in an Enclosed Basin

Synoptic Observations of Near-Inertial Motions in an Enclosed Basin

Near-inertial motions are common in the coastal ocean, producing significant currents, isopycnal displacements, and turbulent mixing. Unknown fractions of near-inertial energy are locally dissipated in the mixed layer and converted to offshore propagating internal waves along the coast. Here, we examine near-inertial motions from July to October 2017 at 10 moorings in Lake Superior, which provides a natural laboratory for the coastal ocean. The lake has an approximate two-layer structure and is dominated by near-inertial currents that reach 0.50 m  s 1 ${\mathrm{s}}^{-1}$ and isopycnal displacements that reach 10 m. Average mode-1 near-inertial kinetic energy (KE) and available potential energy (APE) are 320 J  m 2 ${\mathrm{m}}^{-2}$ and 10 J  m 2 ${\mathrm{m}}^{-2}$ , respectively. KE is inhibited near the coast and APE has no basin-wide structure. Velocity is separated into a basin-averaged inertial oscillation (IO) and a near inertial wave (NIW) residual. A slab model explains 87% of the IO variance, while the NIW field exhibits 5 W m 1 ${\mathrm{m}}^{-1}$ offshore energy fluxes along the coasts, a group speed of 0.1 m  s 1 ${\mathrm{s}}^{-1}$ , and a wavelength of 60 km. The IOs and NIWs contain 200 J  m 2 ${\mathrm{m}}^{-2}$ and 120 J  m 2 ${\mathrm{m}}^{-2}$ , respectively. We determine that 1.0 mW  m 2 ${\mathrm{m}}^{-2}$ of wind work goes into to IOs, and 60% of this power is locally dissipated, while the other 40% is converted to NIWs at the coasts. IOs are found to dissipate more rapidly than NIWs (4.4 vs. 7.2 days residence time). NIWs are hypothesized to be important for catalyzing shear instabilities that drive turbulence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信