Alicia Tierz, Mikel M. Iparraguirre, Icíar Alfaro, David González, Francisco Chinesta, Elías Cueto
{"title":"论物理现象模拟基础模型的可行性","authors":"Alicia Tierz, Mikel M. Iparraguirre, Icíar Alfaro, David González, Francisco Chinesta, Elías Cueto","doi":"10.1002/nme.70027","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We explore the feasibility of foundation models for the simulation of physical phenomena, with emphasis on continuum (solid and fluid) mechanics. Although so-called “learned simulators” have shown some success when applied to specific tasks, it remains to be studied to what extent they can undergo severe changes in domain shape, boundary conditions, and/or constitutive laws and still provide robust (i.e., hallucination-free) and accurate results. In this paper, we perform an exhaustive study of these features, put ourselves in the worst-case scenario, and study their resistance to such strong changes in their domain of application.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Feasibility of Foundational Models for the Simulation of Physical Phenomena\",\"authors\":\"Alicia Tierz, Mikel M. Iparraguirre, Icíar Alfaro, David González, Francisco Chinesta, Elías Cueto\",\"doi\":\"10.1002/nme.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We explore the feasibility of foundation models for the simulation of physical phenomena, with emphasis on continuum (solid and fluid) mechanics. Although so-called “learned simulators” have shown some success when applied to specific tasks, it remains to be studied to what extent they can undergo severe changes in domain shape, boundary conditions, and/or constitutive laws and still provide robust (i.e., hallucination-free) and accurate results. In this paper, we perform an exhaustive study of these features, put ourselves in the worst-case scenario, and study their resistance to such strong changes in their domain of application.</p>\\n </div>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"126 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.70027\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
On the Feasibility of Foundational Models for the Simulation of Physical Phenomena
We explore the feasibility of foundation models for the simulation of physical phenomena, with emphasis on continuum (solid and fluid) mechanics. Although so-called “learned simulators” have shown some success when applied to specific tasks, it remains to be studied to what extent they can undergo severe changes in domain shape, boundary conditions, and/or constitutive laws and still provide robust (i.e., hallucination-free) and accurate results. In this paper, we perform an exhaustive study of these features, put ourselves in the worst-case scenario, and study their resistance to such strong changes in their domain of application.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.