关于谢特曼的两个问题

IF 1 2区 数学 Q1 MATHEMATICS
Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan, Jan van Mill
{"title":"关于谢特曼的两个问题","authors":"Guram Bezhanishvili,&nbsp;Nick Bezhanishvili,&nbsp;Joel Lucero-Bryan,&nbsp;Jan van Mill","doi":"10.1112/jlms.70090","DOIUrl":null,"url":null,"abstract":"<p>We provide partial solutions to two problems posed by Shehtman concerning the modal logic of the Čech–Stone compactification of an ordinal space. We use the Continuum Hypothesis to give a finite axiomatization of the modal logic of <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>(</mo>\n <msup>\n <mi>ω</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\beta (\\omega ^2)$</annotation>\n </semantics></math>, thus resolving Shehtman's first problem for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math>. We also characterize modal logics arising from the Čech–Stone compactification of an ordinal <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> provided the Cantor normal form of <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> satisfies an additional condition. This gives a partial solution of Shehtman's second problem.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70090","citationCount":"0","resultStr":"{\"title\":\"On Shehtman's two problems\",\"authors\":\"Guram Bezhanishvili,&nbsp;Nick Bezhanishvili,&nbsp;Joel Lucero-Bryan,&nbsp;Jan van Mill\",\"doi\":\"10.1112/jlms.70090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide partial solutions to two problems posed by Shehtman concerning the modal logic of the Čech–Stone compactification of an ordinal space. We use the Continuum Hypothesis to give a finite axiomatization of the modal logic of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\beta (\\\\omega ^2)$</annotation>\\n </semantics></math>, thus resolving Shehtman's first problem for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n=2$</annotation>\\n </semantics></math>. We also characterize modal logics arising from the Čech–Stone compactification of an ordinal <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math> provided the Cantor normal form of <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math> satisfies an additional condition. This gives a partial solution of Shehtman's second problem.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70090\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70090","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了Shehtman关于序空间Čech-Stone紧化的模态逻辑的两个问题的部分解。我们使用连续统假设给出β (ω 2) $\beta (\omega ^2)$模态逻辑的有限公理化,从而解决了谢尔曼对于n = 2的第一个问题$n=2$。如果γ $\gamma$的康托范式满足一个附加条件,我们还描述了由有序γ $\gamma$的Čech-Stone紧化引起的模态逻辑。这就给出了谢尔曼第二个问题的部分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Shehtman's two problems

On Shehtman's two problems

We provide partial solutions to two problems posed by Shehtman concerning the modal logic of the Čech–Stone compactification of an ordinal space. We use the Continuum Hypothesis to give a finite axiomatization of the modal logic of β ( ω 2 ) $\beta (\omega ^2)$ , thus resolving Shehtman's first problem for n = 2 $n=2$ . We also characterize modal logics arising from the Čech–Stone compactification of an ordinal γ $\gamma$ provided the Cantor normal form of γ $\gamma$ satisfies an additional condition. This gives a partial solution of Shehtman's second problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信