LbNAM2-LbZDS模块通过参与ABA的生物合成来增强枸杞的抗旱性

IF 6.2 1区 生物学 Q1 PLANT SCIENCES
Fang Ma, Yunfei Liang, Fanyi Meng, Peizhi Yang, Cong Guo, Hongyan Shi, Mengqiu Ma, Yuqin Wang, Ru Feng, Yiyong Cai, Tixu Hu, Rugang Chen, Yue Yin, Xiangqiang Zhan
{"title":"LbNAM2-LbZDS模块通过参与ABA的生物合成来增强枸杞的抗旱性","authors":"Fang Ma,&nbsp;Yunfei Liang,&nbsp;Fanyi Meng,&nbsp;Peizhi Yang,&nbsp;Cong Guo,&nbsp;Hongyan Shi,&nbsp;Mengqiu Ma,&nbsp;Yuqin Wang,&nbsp;Ru Feng,&nbsp;Yiyong Cai,&nbsp;Tixu Hu,&nbsp;Rugang Chen,&nbsp;Yue Yin,&nbsp;Xiangqiang Zhan","doi":"10.1111/tpj.70077","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Wolfberry (<i>Lycium barbarum</i> L.) fruit, renowned for its high carotenoid content, is extensively used in traditional Chinese herbal medicine and cuisine. Drought is a significant global challenge to crop production, with carotenoids playing crucial roles in enhancing drought resistance in higher plants. <i>ζ</i>-Carotene desaturase (ZDS), a key enzyme in the carotenoid biosynthesis pathway, catalyzes the conversion of <i>ζ</i>-carotene to lycopene. However, the molecular mechanisms by which <i>LbZDS</i> responds to drought stress remain largely unexplored. In this study, we demonstrated that <i>LbZDS</i> transcription is induced by PEG, NaCl, and abscisic acid (ABA) treatments. Overexpression of <i>LbZDS</i> in both wolfberry and tomato plants conferred enhanced drought tolerance by promoting ABA synthesis. We further identified that the NAC transcription factor LbNAM2 directly binds to the promoter region of <i>LbZDS</i> and activates its expression, as evidenced by electrophoretic mobility shift assays, yeast one-hybrid assays, and dual-luciferase assays. Silencing <i>LbNAM2</i>, or dual silencing of <i>LbNAM2</i> and <i>LbZDS</i> via virus-induced gene silencing (VIGS), severely compromised drought tolerance in wolfberry plants. Additionally, overexpression of <i>LbZDS</i> resulted in a marked increase in carotenoid content, while silencing either <i>LbZDS</i>, <i>LbNAM2</i>, or both together led to reduced carotenoid levels. In conclusion, our study provides critical insights into the functional roles and regulatory mechanisms of the LbNAM2–<i>LbZDS</i> module in drought stress response and carotenoid biosynthesis in wolfberry.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 6","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The LbNAM2-LbZDS module enhances drought resistance in wolfberry (Lycium barbarum) by participating in ABA biosynthesis\",\"authors\":\"Fang Ma,&nbsp;Yunfei Liang,&nbsp;Fanyi Meng,&nbsp;Peizhi Yang,&nbsp;Cong Guo,&nbsp;Hongyan Shi,&nbsp;Mengqiu Ma,&nbsp;Yuqin Wang,&nbsp;Ru Feng,&nbsp;Yiyong Cai,&nbsp;Tixu Hu,&nbsp;Rugang Chen,&nbsp;Yue Yin,&nbsp;Xiangqiang Zhan\",\"doi\":\"10.1111/tpj.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Wolfberry (<i>Lycium barbarum</i> L.) fruit, renowned for its high carotenoid content, is extensively used in traditional Chinese herbal medicine and cuisine. Drought is a significant global challenge to crop production, with carotenoids playing crucial roles in enhancing drought resistance in higher plants. <i>ζ</i>-Carotene desaturase (ZDS), a key enzyme in the carotenoid biosynthesis pathway, catalyzes the conversion of <i>ζ</i>-carotene to lycopene. However, the molecular mechanisms by which <i>LbZDS</i> responds to drought stress remain largely unexplored. In this study, we demonstrated that <i>LbZDS</i> transcription is induced by PEG, NaCl, and abscisic acid (ABA) treatments. Overexpression of <i>LbZDS</i> in both wolfberry and tomato plants conferred enhanced drought tolerance by promoting ABA synthesis. We further identified that the NAC transcription factor LbNAM2 directly binds to the promoter region of <i>LbZDS</i> and activates its expression, as evidenced by electrophoretic mobility shift assays, yeast one-hybrid assays, and dual-luciferase assays. Silencing <i>LbNAM2</i>, or dual silencing of <i>LbNAM2</i> and <i>LbZDS</i> via virus-induced gene silencing (VIGS), severely compromised drought tolerance in wolfberry plants. Additionally, overexpression of <i>LbZDS</i> resulted in a marked increase in carotenoid content, while silencing either <i>LbZDS</i>, <i>LbNAM2</i>, or both together led to reduced carotenoid levels. In conclusion, our study provides critical insights into the functional roles and regulatory mechanisms of the LbNAM2–<i>LbZDS</i> module in drought stress response and carotenoid biosynthesis in wolfberry.</p>\\n </div>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"121 6\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70077\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70077","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

枸杞(Lycium barbarum L.)果实以其高类胡萝卜素含量而闻名,被广泛用于传统的中草药和烹饪中。干旱是全球作物生产面临的重大挑战,类胡萝卜素在提高高等植物抗旱性方面发挥着至关重要的作用。ζ-胡萝卜素去饱和酶(ZDS)是类胡萝卜素生物合成途径中的关键酶,可催化ζ-胡萝卜素转化为番茄红素。然而,LbZDS对干旱胁迫反应的分子机制在很大程度上仍未被探索。在这项研究中,我们证明了LbZDS转录是由PEG、NaCl和ABA处理诱导的。枸杞和番茄中LbZDS的过表达通过促进ABA合成而增强了抗旱性。我们进一步发现,NAC转录因子LbNAM2直接结合到LbZDS的启动子区域并激活其表达,这一点通过电泳迁移转移实验、酵母单杂交实验和双荧光素酶实验得到了证实。沉默LbNAM2,或通过病毒诱导基因沉默(VIGS)对LbNAM2和LbZDS进行双重沉默,严重损害了枸杞植株的抗旱性。此外,过表达LbZDS导致类胡萝卜素含量显著增加,而沉默LbZDS、LbNAM2或两者均导致类胡萝卜素水平降低。综上所述,我们的研究为LbNAM2-LbZDS模块在枸杞干旱胁迫响应和类胡萝卜素生物合成中的功能作用和调控机制提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The LbNAM2-LbZDS module enhances drought resistance in wolfberry (Lycium barbarum) by participating in ABA biosynthesis

Wolfberry (Lycium barbarum L.) fruit, renowned for its high carotenoid content, is extensively used in traditional Chinese herbal medicine and cuisine. Drought is a significant global challenge to crop production, with carotenoids playing crucial roles in enhancing drought resistance in higher plants. ζ-Carotene desaturase (ZDS), a key enzyme in the carotenoid biosynthesis pathway, catalyzes the conversion of ζ-carotene to lycopene. However, the molecular mechanisms by which LbZDS responds to drought stress remain largely unexplored. In this study, we demonstrated that LbZDS transcription is induced by PEG, NaCl, and abscisic acid (ABA) treatments. Overexpression of LbZDS in both wolfberry and tomato plants conferred enhanced drought tolerance by promoting ABA synthesis. We further identified that the NAC transcription factor LbNAM2 directly binds to the promoter region of LbZDS and activates its expression, as evidenced by electrophoretic mobility shift assays, yeast one-hybrid assays, and dual-luciferase assays. Silencing LbNAM2, or dual silencing of LbNAM2 and LbZDS via virus-induced gene silencing (VIGS), severely compromised drought tolerance in wolfberry plants. Additionally, overexpression of LbZDS resulted in a marked increase in carotenoid content, while silencing either LbZDS, LbNAM2, or both together led to reduced carotenoid levels. In conclusion, our study provides critical insights into the functional roles and regulatory mechanisms of the LbNAM2–LbZDS module in drought stress response and carotenoid biosynthesis in wolfberry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信