射线辐照对废放射性阴离子交换树脂理化特性及浸出行为的影响

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Seung Joo Lim, Wang-Kyu Choi, Mansoo Choi, Seonbyeong Kim, Sang-Hun Lee
{"title":"射线辐照对废放射性阴离子交换树脂理化特性及浸出行为的影响","authors":"Seung Joo Lim,&nbsp;Wang-Kyu Choi,&nbsp;Mansoo Choi,&nbsp;Seonbyeong Kim,&nbsp;Sang-Hun Lee","doi":"10.1155/er/8580010","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Gamma ray irradiation of spent anion exchange resins resulted in significant physicochemical changes. The poly(styrene-divinylbenzene) (PS-DVB) backbone underwent oxidation, leading to the formation of various oxygen bonds. Damage to the functional group was confirmed by the decomposition and oxidation of the quaternary ammonium group. Oxygen in the air was grafted on PS-DVB backbone at 300 kGy. Both grafting and crosslinking occurred simultaneously at 500 kGy but more active crosslinking reactions. In contrast, at 700 kGy, degradation became predominant over grafting and crosslinking. Thermal analysis showed elevated decomposition temperature and increased residual products, indicating highly crosslinking reactions with escalating radiation dose. The substantial release of cobalt ions and organic substances is observed in the irradiated anion exchange resins. The disposal of spent resins in a radioactive waste facility carries a substantial risk of leaching complexing agents and complexed radioactive isotopes, underscoring the importance of radioactive waste management to minimize environmental hazards. The insights gained from this study are crucial for informing the development of effective risk mitigation strategies and ensuring the safe, long-term containment of radioactive materials in disposal sites.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/8580010","citationCount":"0","resultStr":"{\"title\":\"Effects of Gamma Ray Irradiation on Physicochemical Characteristics and Leaching Behaviors of Spent Radioactive Anion Exchange Resin\",\"authors\":\"Seung Joo Lim,&nbsp;Wang-Kyu Choi,&nbsp;Mansoo Choi,&nbsp;Seonbyeong Kim,&nbsp;Sang-Hun Lee\",\"doi\":\"10.1155/er/8580010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Gamma ray irradiation of spent anion exchange resins resulted in significant physicochemical changes. The poly(styrene-divinylbenzene) (PS-DVB) backbone underwent oxidation, leading to the formation of various oxygen bonds. Damage to the functional group was confirmed by the decomposition and oxidation of the quaternary ammonium group. Oxygen in the air was grafted on PS-DVB backbone at 300 kGy. Both grafting and crosslinking occurred simultaneously at 500 kGy but more active crosslinking reactions. In contrast, at 700 kGy, degradation became predominant over grafting and crosslinking. Thermal analysis showed elevated decomposition temperature and increased residual products, indicating highly crosslinking reactions with escalating radiation dose. The substantial release of cobalt ions and organic substances is observed in the irradiated anion exchange resins. The disposal of spent resins in a radioactive waste facility carries a substantial risk of leaching complexing agents and complexed radioactive isotopes, underscoring the importance of radioactive waste management to minimize environmental hazards. The insights gained from this study are crucial for informing the development of effective risk mitigation strategies and ensuring the safe, long-term containment of radioactive materials in disposal sites.</p>\\n </div>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/8580010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/er/8580010\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/8580010","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

废阴离子交换树脂经γ射线辐照后,产生了明显的理化变化。聚苯乙烯-二乙烯基苯(PS-DVB)主链发生氧化,形成多种氧键。对官能团的破坏通过季铵基的分解和氧化得到证实。将空气中的氧气以300 kGy的速度接枝在PS-DVB骨架上。在500kgy下,接枝和交联反应同时发生,但交联反应更为活跃。相比之下,在700 kGy时,降解比接枝和交联更占优势。热分析显示分解温度升高,残余产物增加,表明随着辐射剂量的增加,发生了高度交联反应。在辐照阴离子交换树脂中观察到钴离子和有机物质的大量释放。在放射性废物设施中处置废树脂具有浸出络合剂和络合放射性同位素的重大风险,强调了放射性废物管理对尽量减少环境危害的重要性。从这项研究中获得的见解对于制定有效的风险缓解战略和确保在处置场址安全、长期遏制放射性物质至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of Gamma Ray Irradiation on Physicochemical Characteristics and Leaching Behaviors of Spent Radioactive Anion Exchange Resin

Effects of Gamma Ray Irradiation on Physicochemical Characteristics and Leaching Behaviors of Spent Radioactive Anion Exchange Resin

Gamma ray irradiation of spent anion exchange resins resulted in significant physicochemical changes. The poly(styrene-divinylbenzene) (PS-DVB) backbone underwent oxidation, leading to the formation of various oxygen bonds. Damage to the functional group was confirmed by the decomposition and oxidation of the quaternary ammonium group. Oxygen in the air was grafted on PS-DVB backbone at 300 kGy. Both grafting and crosslinking occurred simultaneously at 500 kGy but more active crosslinking reactions. In contrast, at 700 kGy, degradation became predominant over grafting and crosslinking. Thermal analysis showed elevated decomposition temperature and increased residual products, indicating highly crosslinking reactions with escalating radiation dose. The substantial release of cobalt ions and organic substances is observed in the irradiated anion exchange resins. The disposal of spent resins in a radioactive waste facility carries a substantial risk of leaching complexing agents and complexed radioactive isotopes, underscoring the importance of radioactive waste management to minimize environmental hazards. The insights gained from this study are crucial for informing the development of effective risk mitigation strategies and ensuring the safe, long-term containment of radioactive materials in disposal sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信