经典线性分类器在PolSAR影像土地覆盖分类中的无监督特征选择方法

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kun Tian, Xichao Liu, Dapeng Tao, Jun Ni
{"title":"经典线性分类器在PolSAR影像土地覆盖分类中的无监督特征选择方法","authors":"Kun Tian,&nbsp;Xichao Liu,&nbsp;Dapeng Tao,&nbsp;Jun Ni","doi":"10.1111/coin.70025","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Land coverage mapping and classification is one of the critical information-based tools for sustainable agricultural development, enabling relevant departments to carry out agricultural resource adjustments, yield predictions, and other tasks in advance. As a vital means of acquiring land cover and usage information, SAR sensors have become an important research direction due to their all-weather and all-day working capabilities. Nevertheless, traditional classification methods in PolSAR image classification often input a combination of various scattering features, i.e., high-dimensional feature combination, into classifiers, leading to mutual interference among different features and consequently degrading classification performance, especially for linear classifiers such as NRS and SVM. To mitigate this interference, this paper proposed an unsupervised feature selection based on spectral clustering (FSSC) that constructs a targeted approach by leveraging the linear expression capabilities of high-dimensional features. In this method, the linear relationships between different features are first analyzed, and the linear similarity between features can be quantitatively expressed using Pearson correlation coefficients, forming a feature similarity matrix. Subsequently, the similarity matrix undergoes unsupervised similarity partitioning through spectral clustering, dividing the features into distinct combinations. Features within clustering subsets can be considered as combinations with high linear similarity. Therefore, KL divergence is applied to select the most representative features within each cluster, and the resulting representative feature combinations from different clustering subsets are combined to form an optimal feature set, achieving the purpose of feature selection. This method maps high-dimensional feature combinations into low-dimensional ones while preserving the essential attributes of the original data, thereby retaining the valuable feature information and enhancing classification performance. Experimental outcomes conclusively show that the proposed method enhances the overall accuracy (OA) of SVM by 4.51% and the OA of NRS by 2.34% in the Flevoland Dataset, underscoring its efficacy in PolSAR image classification, especially for linear classifiers.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One Unsupervised Feature Selection Method for the Classical Linear Classifier in Land Coverage Classification With PolSAR Imagery\",\"authors\":\"Kun Tian,&nbsp;Xichao Liu,&nbsp;Dapeng Tao,&nbsp;Jun Ni\",\"doi\":\"10.1111/coin.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Land coverage mapping and classification is one of the critical information-based tools for sustainable agricultural development, enabling relevant departments to carry out agricultural resource adjustments, yield predictions, and other tasks in advance. As a vital means of acquiring land cover and usage information, SAR sensors have become an important research direction due to their all-weather and all-day working capabilities. Nevertheless, traditional classification methods in PolSAR image classification often input a combination of various scattering features, i.e., high-dimensional feature combination, into classifiers, leading to mutual interference among different features and consequently degrading classification performance, especially for linear classifiers such as NRS and SVM. To mitigate this interference, this paper proposed an unsupervised feature selection based on spectral clustering (FSSC) that constructs a targeted approach by leveraging the linear expression capabilities of high-dimensional features. In this method, the linear relationships between different features are first analyzed, and the linear similarity between features can be quantitatively expressed using Pearson correlation coefficients, forming a feature similarity matrix. Subsequently, the similarity matrix undergoes unsupervised similarity partitioning through spectral clustering, dividing the features into distinct combinations. Features within clustering subsets can be considered as combinations with high linear similarity. Therefore, KL divergence is applied to select the most representative features within each cluster, and the resulting representative feature combinations from different clustering subsets are combined to form an optimal feature set, achieving the purpose of feature selection. This method maps high-dimensional feature combinations into low-dimensional ones while preserving the essential attributes of the original data, thereby retaining the valuable feature information and enhancing classification performance. Experimental outcomes conclusively show that the proposed method enhances the overall accuracy (OA) of SVM by 4.51% and the OA of NRS by 2.34% in the Flevoland Dataset, underscoring its efficacy in PolSAR image classification, especially for linear classifiers.</p>\\n </div>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70025\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70025","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

土地覆被制图与分类是农业可持续发展的关键信息化工具之一,可使有关部门提前开展农业资源调整、产量预测等工作。SAR传感器作为获取土地覆盖和土地利用信息的重要手段,由于其全天候、全天候的工作能力,已成为一个重要的研究方向。然而,传统的PolSAR图像分类方法往往将各种散射特征的组合,即高维特征组合输入到分类器中,导致不同特征之间相互干扰,导致分类性能下降,尤其是NRS和SVM等线性分类器。为了减轻这种干扰,本文提出了一种基于谱聚类(FSSC)的无监督特征选择方法,该方法利用高维特征的线性表达能力构建了一种有针对性的方法。该方法首先分析不同特征之间的线性关系,利用Pearson相关系数定量表达特征之间的线性相似度,形成特征相似度矩阵。随后,通过谱聚类对相似矩阵进行无监督的相似度划分,将特征划分为不同的组合。聚类子集内的特征可以看作是具有高线性相似性的组合。因此,利用KL散度在每个聚类中选择最具代表性的特征,并将不同聚类子集的代表性特征组合组合形成最优特征集,达到特征选择的目的。该方法在保留原始数据本质属性的同时,将高维特征组合映射为低维特征组合,从而保留有价值的特征信息,提高分类性能。实验结果表明,该方法在Flevoland数据集上将SVM的总体准确率(OA)提高了4.51%,将NRS的OA提高了2.34%,突出了其在PolSAR图像分类中的有效性,特别是对线性分类器的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One Unsupervised Feature Selection Method for the Classical Linear Classifier in Land Coverage Classification With PolSAR Imagery

Land coverage mapping and classification is one of the critical information-based tools for sustainable agricultural development, enabling relevant departments to carry out agricultural resource adjustments, yield predictions, and other tasks in advance. As a vital means of acquiring land cover and usage information, SAR sensors have become an important research direction due to their all-weather and all-day working capabilities. Nevertheless, traditional classification methods in PolSAR image classification often input a combination of various scattering features, i.e., high-dimensional feature combination, into classifiers, leading to mutual interference among different features and consequently degrading classification performance, especially for linear classifiers such as NRS and SVM. To mitigate this interference, this paper proposed an unsupervised feature selection based on spectral clustering (FSSC) that constructs a targeted approach by leveraging the linear expression capabilities of high-dimensional features. In this method, the linear relationships between different features are first analyzed, and the linear similarity between features can be quantitatively expressed using Pearson correlation coefficients, forming a feature similarity matrix. Subsequently, the similarity matrix undergoes unsupervised similarity partitioning through spectral clustering, dividing the features into distinct combinations. Features within clustering subsets can be considered as combinations with high linear similarity. Therefore, KL divergence is applied to select the most representative features within each cluster, and the resulting representative feature combinations from different clustering subsets are combined to form an optimal feature set, achieving the purpose of feature selection. This method maps high-dimensional feature combinations into low-dimensional ones while preserving the essential attributes of the original data, thereby retaining the valuable feature information and enhancing classification performance. Experimental outcomes conclusively show that the proposed method enhances the overall accuracy (OA) of SVM by 4.51% and the OA of NRS by 2.34% in the Flevoland Dataset, underscoring its efficacy in PolSAR image classification, especially for linear classifiers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信